• 1
    Kolesnick RN. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 2002; 110: 38.
  • 2
    Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 2004; 4: 60416.
  • 3
    Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998; 60: 64365.
  • 4
    Morales A, Lee H, Goñi F, Kolesnick RN, Fernandez-Checa JC. Sphingolipids and cell death. Apoptosis 2007, in press.
  • 5
    Schuchmann M, Galle PR. Apoptosis in liver disease. Eur J Gastroenterol Hepatol 2001; 13: 78590.
  • 6
    Schwabe RF, Brenner DA. Mechanisms of liver injury. I. TNF-α-induced liver injury: role of IKK, JNK and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006; 290: G5839.
  • 7
    Wajant H, Pfizernaier K, Schuerich P. Tumor necrosis factor signaling. Cell Death Differ 2003; 10: 4565.
  • 8
    Garcia-Ruiz C, Colell A, Mari M, et al. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 2003; 111: 197208.
  • 9
    Mari M, Colell A, Morales A, et al. Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 2004; 113: 895904.
  • 10
    Wiegman K, Schutze S, Machleidt T, et al. Functional dichotomy of neutral and acid sphingomyelinase in tumor necrosis factor signaling. Cell 1994; 78: 100515.
  • 11
    Merrill AH. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 2002; 277: 258436.
  • 12
    Burtron A, Santiago R, Mansilla P, et al. Maize (Zeamays L.) genetic factors for preventing fumonisin contamination. J Agric Food Chem 2006; 54: 61137.
  • 13
    Cremesti AE, Goñi F, Kolesnick RN. Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 2002; 531: 4753.
  • 14
    Grassme H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 2003; 22: 545770.
  • 15
    Clarke CJ, Snook CF, Tani M, et al. The extended family of neutral sphingomyelinases. Biochemistry 2006; 45: 1124756.
  • 16
    Tomiuj S, Hofmann K, Nox M, Zumbansen M, Stoffel W. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci USA 1998; 95: 363843.
  • 17
    Sawai H, Domae N, Nagan N, Hannun YA. Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem 1999; 274: 381319.
  • 18
    Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Bronke M. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 2006; 281: 1378493.
  • 19
    Shcissel SL, Jiang X, Tweedie-Hardman J, et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 1998; 273: 273846.
  • 20
    Liu P, Anderson RG. Compartmentalized production of ceramide at the cell surface. J Biol Chem 1995; 270: 2717985.
  • 21
    Morales A, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC. Glycosphingolipids and mitochondria: role in apoptosis and disease. Glycoconjugate J 2004; 20: 57988.
  • 22
    Allende ML, Proia RL. Lubricating cell signaling pathways with gangliosides. Curr Opin Struct Biol 2002; 12: 58792.
  • 23
    Valaperta R, Chigorno V, Basso L, et al. Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 2006; 20: 12279.
  • 24
    Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D. Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 2004; 382: 52733.
  • 25
    El Bawab S, Roddy P, Qian T, et al. Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 2000; 275: 2150813.
  • 26
    Gomez-Muñoz A. Ceramide-1-phosphate/ceramide: a switch between life and death. Biochim Biophys Acta 2006, in press.
  • 27
    Igarashi Y. Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. J Biochem (Tokyo) 1997; 122 (6): 10807.
  • 28
    Mari M, Caballero F, Colell A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 2006; 4: 18598.
  • 29
    Segui B, Cuvillier O, Adam-Klagues S, et al. Involvement of FAN in TNF-induced apoptosis. J Clin Invest 2001; 108: 14351.
  • 30
    Mallagarie-Cazenave S, Segui B, Leveque S, et al. Role of FAN in tumor necrosis factor-alpha and lipopolysaccharide-induced interleukin-6 secretion and lethality in d-galactosamine-sensitized mice. J Biol Chem 2004; 279: 1864855.
  • 31
    Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa JC. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release and caspase activation. FASEB J 2000; 14: 84758.
  • 32
    Rippo MR, Malisan F, Ravagnan F, et al. GD3 ganglioside directly targets mitochondria is a bcl-2 controlled fashion. FASEB J 2000; 14: 204754.
  • 33
    Malisan F, Franchi L, Tomassini B, et al. Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med 2002; 196: 153541.
  • 34
    Colell A, Morales A, Fernandez-Checa JC, Garcia-Ruiz C. Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-mediated apoptosis in HT-29 cells through glycosphingolipid generation. Possible role of ganglioside GD3. FEBS Lett 2002; 526: 13541.
  • 35
    Colell A, Garcia-Ruiz C, Roman J, Ballesta J, Fernandez-Checa JC. Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-kappaB-dependent survival pathway. FASEB J 2001; 15: 106870.
  • 36
    Colell A, Garcia-Ruiz C, Miranda M, et al. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 1998; 115: 154151.
  • 37
    Pastorino JG, Hoek JB. Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatology 2000; 31: 114152.
  • 38
    Minagawa M, Deng Q, Liu ZX, Tsukamoto H, Dennert G. Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha during alcohol consumption. Gastroenterology 2004; 126: 138799.
  • 39
    Fernandez-Checa JC, Kaplowitz N. Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol 2005; 204: 26373.
  • 40
    Shulga N, Hoek J B, Pastorino JG. Elevated PTEN levels account for the increased sensitivity of ethanol-exposed cells to tumor necrosis factor-induced cytotoxicity. J Biol Chem 2005; 280: 941624.
  • 41
    Llacuna L, Mari M, Garcia-Ruiz C, Fenandez-Checa JC, Morales A. Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology 2006; 44 (3): 56172.
  • 42
    Umehara T, Sudoh M, Yasui F, et al. Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model. Biochem Biophys Res Commun 2006; 346: 6773.
  • 43
    Sakamoto H, Okamoto K, Aoki M, et al. Host sphingolipid biosynthesis as a target for hepatitis C virus therapy. Nat Chem Biol 2005; 1: 3337.
  • 44
    Sillins I, Norstrand M, Hogberg J, Stenius U. Sphingolipids suppress preneoplastic rat hepatocytes in vitro and in vivo. Carcinogenesis 2003; 24 (6): 107783.
  • 45
    Selzner M, Bielawska A, Morse MA, et al. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 2001; 61: 123340.
  • 46
    Morales A, Paris R, Villanueva A, et al. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene 2007; 26(6): 90516.
  • 47
    Paris R, Morales A, Coll O, et al. Ganglioside GD3 sensitizes human hepatoma cells to cancer therapy. J Biol Chem 2002; 277 (51): 498706.
  • 48
    Poorthuis BJ, Wevers RA, Kleijer WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 1999; 105: 1516.
  • 49
    HersHG, Van HoofF, eds. Lysosomes and Storage Disease. New York: Academic Press, 1973.
  • 50
    Sandhoff K. Sphingolipidoses. J Clin Pathol Suppl (R Coll Pathol) 1974; 8: 94105.
  • 51
    Beltroy EP, Richardson JA, Horton JD, Turkey SD, Dietsky JM. Cholesterol accumulation and liver cell death in mice with Niemann-Pick type C disease. Hepatology 2005; 42: 88693.
  • 52
    Perel Y, Bioulac-Sage P, Chateil JF. Gaucher's disease and fatal hepatic fibrosis despite prolonged enzyme replacement therapy. Pediatrics 2002; 109: 11703.
  • 53
    Sinclair GB, Jevon G, Colobong KE, et al. Generation of a conditional knockout of murine glucocerebrosidase: utility for the study of gaucher disease. Mol Genet Metab 2007; 90: 14856.
  • 54
    Fredrickson D, Sloan H. Sphingomyelin lipidosis: Niemann-Pick disease. In: StanburyJB, SyngaardenJB, FredricksonDS, eds. The Metabolic Basis of Inherited Disease, 3rd edn. New York: McGraw-Hill, 1972; 783.
  • 55
    Petrelli M, Blair JD. The liver in GM1 gangliosidosis types 1 and 2. A light and electron microscopical study. Arch Pathol 1975; 99: 1116.
  • 56
    Futerman AH, Van Meet G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 2004; 5 (7): 55465.
  • 57
    Wilcox WR. Lysosomal storage disorders: the need for better pediatric recognition and comprehensive care. J Pediatr 2004; 144 (Suppl. 5): S314.
  • 58
    Marks DL, Pagano RE. Endocytosis and sorting of glycosphingolipids in sphingolipid storage disease. Trends Cell Biol 2002; 12 (12): 60513.
  • 59
    Sillence DJ, Puri V, Marks DL, et al. Glucosylceramide modulates membrane traffic along the endocytic pathway. J Lipid Res 2002; 43 (11): 183745.
  • 60
    Choudhury A, Dominguez M, Puri V, et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest 2002; 109 (12): 154150.
  • 61
    Linder MD, Uronen RL, Holtta-Vuori M, et al. Rab8-dependent recycling promotes endosomal cholesterol removal in normal and sphingolipidosis cells. Mol Cell Biol 2007; 18: 4756.
  • 62
    Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000; 275 (23): 172214.
  • 63
    Kolesnich RN, Goñi FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 2000; 184: 285300.
  • 64
    Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 1387: 56972.
  • 65
    Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998; 67: 199225.
  • 66
    Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 2004; 6: 481506.
  • 67
    Altarescu G, Schiffmann R, Parker C, et al. Comparative efficacy of dose regimens in enzyme replacement therapy of type I Gaucher disease. Blood Cells Mol Dis 2000; 26: 28590.
  • 68
    Brady RO. Enzyme replacement therapy: conception, chaos and culmination. Philos Trans R Soc London B 2003; 358: 9159.
  • 69
    D'azzo A. Gene transfer strategies for correction of lysosomal storage disorders. Acta Haematol 2003; 110: 7185.
  • 70
    Cachon-Gonzalez MB, Wang S, Lynch A, et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 2006; 103: 103738.
  • 71
    Krivit W, Peters C, Shapiro EG. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and sly syndromes, and gaucher disease type III. Curr Opin Neurol 1999; 12: 16776.
  • 72
    Cox T, Lalchmann R, Hollak C, et al. Novel oral treatment of Gaucher's disease with n-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000; 355: 14815.
  • 73
    Lachmann RH, Wight DG, Lomad DJ, et al. Massive hepatic fibrosis in Gaucher's disease: clinico-pathological and radiological features. QJM 2000; 93 (4): 23744.