SEARCH

SEARCH BY CITATION

References

  • 1
    Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology 2004; 66: 16779.
  • 2
    Ishak KG, Anthony PP, Sobin LH. Histological typing of tumours of the liver. In: WHO International Histological Classification of Tumours. Berlin: Springer Verlag, 1994. pp. 3745.
  • 3
    Carriaga MT, Henson DE. Liver, gallbladder, extrahepatic bile ducts, and pancreas. Cancer 1995; 75 (Suppl.): 17190.
  • 4
    Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004; 24: 11525.
  • 5
    Khan SA, Davidson BR, Goldin R, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 2002; 51 (Suppl. 6): VI19.
  • 6
    Vauthey JN, Blumgart LH. Recent advances in the management of cholangiocarcinomas. Semin Liver Dis 1994; 14: 10914.
  • 7
    Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol 2006; 3: 3342.
  • 8
    Khan SA, Taylor-Robinson SD, Toledano MB, et al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol 2002; 37: 80613.
  • 9
    Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001; 33: 13537.
  • 10
    Patel T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2002; 2: 10.
  • 11
    Taylor-Robinson SD, Toledano MB, Arora S, et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut 2001; 48: 81620.
  • 12
    Shaib YH, Davila JA, McGlynn K, et al. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol 2004; 40: 4727.
  • 13
    Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology 2005; 128: 165567.
  • 14
    Farrant JM, Hayllar KM, Wilkinson ML, et al. Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 1991; 100: 17107.
  • 15
    Broome U, Olsson R, Loof L, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 1996; 38: 6105.
  • 16
    Bergquist A, Broome U. Hepatobiliary and extra-hepatic malignancies in primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2001; 15: 64356.
  • 17
    Bergquist A, Ekbom A, Olsson R, et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol 2002; 36: 3217.
  • 18
    Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma. Br J Surg 2002; 89: 96270.
  • 19
    Khurana S, Dubey ML, Malla N. Association of parasitic infections and cancers. Indian J Med Microbiol 2005; 23: 749.
  • 20
    Simeone DM. Gallbladder and biliary tree: anatomy and structural anomalies. In: YamadaT, ed. Textbook of Gastroenterology. Philadelphia: Lippincott Williams and Wilkins, 1999; 224457.
  • 21
    Scott J, Shousha S, Thomas HC, et al. Bile duct carcinoma: a late complication of congenital hepatic fibrosis. Case report and review of literature. Am J Gastroenterol 1980; 73: 1139.
  • 22
    Lipsett PA, Pitt HA, Colombani PM, et al. Choledochal cyst disease. A changing pattern of presentation. Ann Surg 1994; 220: 64452.
  • 23
    Khan SA, Thomas HC, Davidson BR, et al. Cholangiocarcinoma. Lancet 2005; 366: 130314.
  • 24
    Shaib YH, El-Serag HB, Davila JA, et al. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case–control study. Gastroenterology 2005; 128: 6206.
  • 25
    Kobayashi M, Ikeda K, Saitoh S, et al. Incidence of primary cholangiocellular carcinoma of the liver in Japanese patients with hepatitis C virus-related cirrhosis. Cancer 2000; 88: 24717.
  • 26
    Sahani D, Prasad SR, Tannabe KK, et al. Thorotrast-induced cholangiocarcinoma: case report. Abdom Imaging 2003; 28: 724.
  • 27
    Hardell L, Bengtsson NO, Jonsson U, et al. Aetiological aspects on primary liver cancer with special regard to alcohol, organic solvents and acute intermittent porphyria – an epidemiological investigation. Br J Cancer 1984; 50: 38997.
  • 28
    Walker NJ, Crockett PW, Nyska A, et al. Dose-additive carcinogenicity of a defined mixture of ‘dioxin-like compounds’. Environ Health Perspect 2005; 113: 438.
  • 29
    Bond GG, McLaren EA, Sabel FL, et al. Liver and biliary tract cancer among chemical workers. Am J Ind Med 1990; 18: 1924.
  • 30
    Bergquist A, Glaumann H, Persson B, et al. Risk factors and clinical presentation of hepatobiliary carcinoma in patients with primary sclerosing cholangitis: a case–control study. Hepatology 1998; 27: 3116.
  • 31
    Chalasani N, Baluyut A, Ismail A, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case–control study. Hepatology 2000; 31: 711.
  • 32
    Paik KY, Jung JC, Heo JS, et al. What prognostic factors are important for resected intrahepatic cholangiocarcinoma?. J Gastroenterol Hepatol 2007. Epub ahead of print.
  • 33
    Rosai J. Ackerman's Surgical Pathology. Mosby: St. Louis, 1996; 9145, 960.
  • 34
    Kitagawa Y, Nagino M, Kamiya J, et al. Lymph node metastasis from hilar cholangiocarcinoma: audit of 110 patients who underwent regional and paraaortic node dissection. Ann Surg 2001; 233: 38592.
  • 35
    Yamamoto M, Takasaki K, Yoshikawa T. Lymph node metastasis in intrahepatic cholangiocarcinoma. Jpn J Clin Oncol 1999; 29: 14750.
  • 36
    Okami J, Dohno K, Sakon M, et al. Genetic detection for micrometastasis in lymph node of biliary tract carcinoma. Clin Cancer Res 2000; 6: 232632.
  • 37
    Bhuiya MR, Nimura Y, Kamiya J, et al. Clinicopathologic studies on perineural invasion of bile duct carcinoma. Ann Surg 1992; 215: 3449.
  • 38
    Klempnauer J, Ridder GJ, Von Wasielewski R, et al. Resectional surgery of hilar cholangiocarcinoma: a multivariate analysis of prognostic factors. J Clin Oncol 1997; 15: 94754.
  • 39
    Rea DJ, Heimbach JK, Rosen CB, et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg 2005; 242: 4518; discussion 458–61.
  • 40
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 75967.
  • 41
    Vogelstein B, Kinzler KW. The Genetic Basis of Human Cancer. New York: McGraw-Hill, Health Professions Division, 1998.
  • 42
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 5770.
  • 43
    Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin North Am 2002; 11: 9951009.
  • 44
    Lee S, Kim WH, Jung HY, et al. Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am J Pathol 2002; 161: 101522.
  • 45
    Kang YK, Kim WH, Lee HW, et al. Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest 1999; 79: 47783.
  • 46
    Sturm PD, Bass IO, Clement MJ, et al. Alterations of the p53 tumor-suppressor gene and K-ras oncogene in perihilar cholangiocarcinomas from a high-incidence area. Int J Cancer 1998; 78: 6958.
  • 47
    Kiba T, Tsuda H, Pairojkul C, et al. Mutations of the p53 tumor suppressor gene and the ras gene family in intrahepatic cholangiocellular carcinomas in Japan and Thailand. Mol Carcinog 1993; 8: 3128.
  • 48
    Wattanasirichaigoon S, Tasanakhajorn U, Jesadapatarakul S. The incidence of K-ras codon 12 mutations in cholangiocarcinoma detected by polymerase chain reaction technique. J Med Assoc Thai 1998; 81: 31623.
  • 49
    Tannapfel A, Benicke M, Katalinic A, et al. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 2000; 47: 7217.
  • 50
    Ahrendt SA, Eisenberger CF, Yip L, et al. Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma. J Surg Res 1999; 84: 8893.
  • 51
    Sugimachi K, Taguchi K, Aishima S, et al. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol 2001; 14: 9005.
  • 52
    Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 91526.
  • 53
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 3625.
  • 54
    Panning B, Jaenisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 1998; 93: 3058.
  • 55
    Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998; 20: 1167.
  • 56
    Bird A. The essentials of DNA methylation. Cell 1992; 70: 58.
  • 57
    Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet 1989; 83: 1818.
  • 58
    Antequera F, Bird A. CpG islands. In: JostJP, SaluzHP, eds. DNA Methylation: Molecular Biology and Biological Significance. Basel: Birkhauser Verlag, 1993; 16985.
  • 59
    Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. In: KleinG, Van de WoudeGF, eds. Advances in Cancer Research. San Diego: Academic Press, 1998; 14196.
  • 60
    Jones PA. DNA methylation errors and cancer. Cancer Res 1996; 56: 24637.
  • 61
    Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999; 21: 1637.
  • 62
    Herman JG, Baylin SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol 2000; 249: 3554.
  • 63
    Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000; 16: 16874.
  • 64
    Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 1998; 95: 68705.
  • 65
    Myohanen SK, Baylin SB, Herman JG. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res 1998; 58: 5913.
  • 66
    Ahuja N, Li Q, Mohan AL, et al. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 1998; 58: 548994.
  • 67
    Issa JP, Ottaviano YL, Celano P, et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 1994; 7: 53640.
  • 68
    Issa JP, Vertino PM, Boehm CD, et al. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci USA 1996; 93: 1175762.
  • 69
    Hsieh CL. Dependence of transcriptional repression on CpG methylation density. Mol Cell Biol 1994; 14: 548794.
  • 70
    Vertino PM, Yen RW, Gao J, et al. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 1996; 16: 455565.
  • 71
    Lewis J, Bird A. DNA methylation and chromatin structure. FEBS Lett 1991; 285: 1559.
  • 72
    Tazi J, Bird A. Alternative chromatin structure at CpG islands. Cell 1990; 60: 90920.
  • 73
    Jeppesen P, Turner BM. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 1993; 74: 2819.
  • 74
    Marahrens Y, Loring J, Jaenisch R. Role of the Xist gene in X chromosome choosing. Cell 1998; 92: 65764.
  • 75
    Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19: 18791.
  • 76
    Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 3869.
  • 77
    Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 1037.
  • 78
    Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001; 70: 81120.
  • 79
    Thiagalingam S, Cheng KH, Lee HJ, et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 2003; 983: 84100.
  • 80
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6: 10716.
  • 81
    Pandolfi PP. Histone deacetylases and transcriptional therapy with their inhibitors. Cancer Chemother Pharmacol 2001; 48 (Suppl. 1): S179.
  • 82
    Hayatsu H, Wataya Y, Kai K, et al. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 1970; 9: 285865.
  • 83
    Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89: 182731.
  • 84
    Wong IH. Qualitative and quantitative polymerase chain reaction-based methods for DNA methylation analyses. Methods Mol Biol 2006; 336: 3343.
  • 85
    Sasaki M, Anast J, Bassett W, et al. Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochem Biophys Res Commun 2003; 309: 3059.
  • 86
    Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 1997; 25: 252931.
  • 87
    Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25: 25324.
  • 88
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 7047.
  • 89
    Yang B, House MG, Guo M, et al. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod Pathol 2005; 18: 41220.
  • 90
    Ueki T, Hsing AW, Gao YT, et al. Alterations of p16 and prognosis in biliary tract cancers from a population-based study in China. Clin Cancer Res 2004; 10: 171725.
  • 91
    Tannapfel A, Sommerer F, Benicke M, et al. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J Pathol 2002; 197: 62431.
  • 92
    Klump B, Hsieh CJ, Dette S, et al. Promoter methylation of INK4a/ARF as detected in bile-significance for the differential diagnosis in biliary disease. Clin Cancer Res 2003; 9: 17738.
  • 93
    Tozawa T, Tamura G, Honda T, et al. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci 2004; 95: 73640.
  • 94
    Hong SM, Choi J, Ryu K, et al. Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med 2006; 130: 338.
  • 95
    Wong N, Li L, Tsang K, et al. Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol 2002; 37: 6339.
  • 96
    Foja S, Goldberg M, Schagdarsurengin U, et al. Promoter methylation and loss of coding exons of the fragile histidine triad (FHIT) gene in intrahepatic cholangiocarcinomas. Liver Int 2005; 25: 12028.
  • 97
    Tischoff I, Markwarth A, Witzigmann H, et al. Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int J Cancer 2005; 115: 6849.
  • 98
    Fishel R, Kolodner RD. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev 1995; 5: 38295.
  • 99
    Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 1999; 9: 8996.
  • 100
    Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997; 57: 80811.
  • 101
    Esteller M, Levine R, Baylin SB, et al. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998; 17: 24137.
  • 102
    Fleisher AS, Esteller M, Wang S, et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999; 59: 10905.
  • 103
    Fang DC, Wang RQ, Yang SM, et al. Mutation and methylation of hMLH1 in gastric carcinomas with microsatellite instability. World J Gastroenterol 2003; 9: 6559.
  • 104
    Abraham SC, Lee JH, Boitnott JK, et al. Microsatellite instability in intraductal papillary neoplasms of the biliary tract. Mod Pathol 2002; 15: 130917.
  • 105
    Limpaiboon T, Khaenam P, Chinnasri P, et al. Promoter hypermethylation is a major event of hMLH1 gene inactivation in liver fluke related cholangiocarcinoma. Cancer Lett 2005; 217: 2139.
  • 106
    Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996; 84: 58797.
  • 107
    Tzivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 2002; 277: 30614.
  • 108
    Subramanian RR, Masters SC, Zhang H, et al. Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis. Exp Cell Res 2001; 271: 14251.
  • 109
    Prasad GL, Valverius EM, McDuffie E, et al. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ 1992; 3: 50713.
  • 110
    Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000; 40: 61747.
  • 111
    Van Hemert MJ, Steensma HY, Van Heusden GP. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 2001; 23: 93646.
  • 112
    Conway KE, McConnell BB, Bowring CE, et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 2000; 60: 623642.
  • 113
    Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 52935.
  • 114
    Liu XF, Zhu SG, Zhang H, et al. The methylation status of the TMS1/ASC gene in cholangiocarcinoma and its clinical significance. Hepatobiliary Pancreat Dis Int 2006; 5: 44953.
  • 115
    Koga Y, Kitajima Y, Miyoshi A, et al. Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol 2005; 12: 35463.
  • 116
    Yang B, Guo M, Herman JG, et al. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol 2003; 163: 11017.
  • 117
    Kollermann J, Kempkensteffen C, Helpap B, et al. Impact of hormonal therapy on the detection of promoter hypermethylation of the detoxifying glutathione-S-transferase P1 gene (GSTP1) in prostate cancer. BMC Urol 2006; 6: 15.
  • 118
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 6439.
  • 119
    Li QL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002; 109: 11324.
  • 120
    Isomoto H, Mott JL, Kobayashi S, et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 2007; 132: 38496.
  • 121
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 72534.
  • 122
    Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371: 25761.
  • 123
    Lee JH, Park SJ, Abraham SC, et al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene 2004; 23: 464654.