SEARCH

SEARCH BY CITATION

References

  • 1
    Marin JJG, Macias RIR, Briz O, Perez MJ, Serrano MA. Molecular bases of the excretion of fetal bile acids and pigments through the fetal liver–placenta–maternal liver pathway. Ann Hepatol 2005; 4: 706.
  • 2
    Gonzalez FJ. Human cytochromes P450: problems and prospects. Trends Pharmacol Sci 1992; 13: 34652.
  • 3
    Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 2005; 1687: 8493.
  • 4
    Balistreri WF. Fetal and neonatal bile acid synthesis and metabolism–clinical implications. J Inherit Metab Dis 1991; 14: 45977.
  • 5
    Setchell KD, Dumaswala R, Colombo C, Ronchi M. Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J Biol Chem 1988; 263: 1663744.
  • 6
    Cuesta de Juan S, Monte MJ, Macias RIR, Wauthier V, Buc Calderon P, Marin JJG. Ontogenic development and effect of weaning on the expression of enzymes, transporters and nuclear receptors involved in rat bile acid homeostasis. J Lipid Res 2007; 48: 136270.
  • 7
    Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 1998; 28: 3572.
  • 8
    Blake MJ, Castro L, Leeder JS, Kearns GL. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med 2005; 10: 12338.
  • 9
    Hakkola J, Raunio H, Purkunen R, et al. Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy. Biochem Pharmacol 1996; 52: 37983.
  • 10
    Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet 2005; 44: 9891008.
  • 11
    McDonagh AF, Palma LA, Schmid R. Reduction of biliverdin and placental transfer of bilirubin and biliverdin in the pregnant guinea pig. Biochem J 1981; 194: 27382.
  • 12
    Briz O, Macias RI, Perez MJ, Serrano MA, Marin JJ. Excretion of fetal biliverdin by the rat placenta–maternal liver tandem. Am J Physiol 2006; 290: R74956.
  • 13
    Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K, Tallman MN, Brouwer KL. Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 2006; 27: 44786.
  • 14
    Van Berge Henegouwen GP, Brandt KH, Eyssen H, Parmentier G. Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. Gut 1976; 17: 8619.
  • 15
    Makino I, Hashimoto H, Shinozaki K, Yoshino K, Nakagawa S. Sulfated and nonsulfated bile acids in urine, serum, and bile of patients with hepatobiliary diseases. Gastroenterology 1975; 68: 54553.
  • 16
    Thomassen PA. Urinary bile acids in late pregnancy and in recurrent cholestasis of pregnancy. Eur J Clin Invest 1979; 9: 42532.
  • 17
    King CD, Rios GR, Green MD, Tephly TR. UDP-glucuronosyltransferases. Curr Drug Metab 2000; 1: 14361.
  • 18
    Gall WE, Zawada G, Mojarrabi B, et al. Differential glucuronidation of bile acids, androgens and estrogens by human UGT1A3 and 2B7. J Steroid Biochem Mol Biol 1999; 70: 1018.
  • 19
    Marschall HU, Matern H, Egestad B, Matern S, Sjovall S. 6 alpha-glucuronidation of hyodeoxycholic acid by human liver, kidney and small bowel microsomes. Biochim Biophys Acta 1987; 921: 3927.
  • 20
    Frohling W, Stiehl A. Bile salt glucuronides: identification and quantitative analysis in the urine of patients with cholestasis. Eur J Clin Invest 1976; 6: 6774.
  • 21
    Takikawa H, Otsuka H, Beppu T, Seyama Y, Yamakawa T. Serum concentrations of bile acid glucuronides in hepatobiliary diseases. Digestion 1983; 27: 18995.
  • 22
    Bock KW, Gschaidmeier H, Seidel A, Baird S, Burchell B. Mono- and diglucuronide formation from chrysene and benzo(a)pyrene phenols by 3-methylcholanthrene-inducible phenol UDP-glucuronosyltransferase (UGT1A1). Mol Pharmacol 1992; 42: 6138.
  • 23
    Strassburg CP, Strassburg A, Kneip S, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 2002; 50: 25965.
  • 24
    Miyagi SJ, Collier AC. Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos 2007; 35: 158792.
  • 25
    Tsutsumi K, Kotegawa T, Matsuki S, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther 2001; 70: 1215.
  • 26
    Collier AC, Ganley NA, Tingle MD, et al. UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol 2002; 63: 40919.
  • 27
    Collier AC, Tingle MD, Paxton JW, Mitchell MD, Keelan JA. Metabolizing enzyme localization and activities in the first trimester human placenta: the effect of maternal and gestational age, smoking and alcohol consumption. Hum Reprod 2002; 17: 256472.
  • 28
    Geese WJ, Raftogianis RB. Biochemical characterization and tissue distribution of human SULT2B1. Biochem Biophys Res Commun 2001; 288: 2809.
  • 29
    He D, Meloche CA, Dumas NA, Frost AR, Falany CN. Different subcellular localization of sulphotransferase 2B1b in human placenta and prostate. Biochem J 2004; 379: 53340.
  • 30
    Smelt VA, Mardon HJ, Sim E. Placental expression of arylamine N-acetyltransferases: evidence for linkage disequilibrium between NAT1*10 and NAT2*4 alleles of the two human arylamine N-acetyltransferase loci NAT1 and NAT2. Pharmacol Toxicol 1998; 83: 14957.
  • 31
    Pacifici GM, Colizzi C, Giuliani L, Rane A. Cytosolic epoxide hydrolase in fetal and adult human liver. Arch Tox 1983; 54: 33141.
  • 32
    Prokopenko VM, Partsalis GK, Pavlova NG, Burmistrov SO, Arutyunyan AV. Glutathione-dependent system of antioxidant defense in the placenta in preterm delivery. Bull Exp Biol Med 2002; 133: 4423.
  • 33
    Weinman SA. Electrogenicity of Na(+)-coupled bile acid transporters. Yale J Biol Med 1997; 70: 33140.
  • 34
    Marin JJ, Serrano MA, El-Mir MY, Eleno N, Boyd CA. Bile acid transport by basal membrane vesicles of human term placental trophoblast. Gastroenterology 1990; 99: 14318.
  • 35
    Serrano MA, Macias RI, Briz O, et al. Expression in human trophoblast and choriocarcinoma cell lines, BeWo, Jeg-3 and JAr of genes involved in the hepatobiliary-like excretory function of the placenta. Placenta 2007; 28: 10717.
  • 36
    Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 2006; 372: 41331.
  • 37
    Suchy FJ, Bucuvalas JC, Goodrich AL, Moyer MS, Blitzer BL. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles. Am J Physiol 1986; 251: G66573.
  • 38
    Boyer JL, Hagenbuch B, Ananthanarayanan M, Suchy F, Stieger B, Meier PJ. Phylogenic and ontogenic expression of hepatocellular bile acid transport. Proc Natl Acad Sci USA 1993; 90: 4358.
  • 39
    St-Pierre MV, Stallmach T, Grundschober AF, et al. Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. Am J Physiol 2004; 287: R150516.
  • 40
    Macias RI, Jimenez S, Serrano MA, Monte MJ, Marin JJ. Effect of maternal cholestasis and treatment with ursodeoxycholic acid on the expression of genes involved in the secretion of biliary lipids by the neonatal rat liver. Life Sci 2006; 79: 10149.
  • 41
    Hardikar W, Ananthanarayanan M, Suchy FJ. Differential ontogenic regulation of basolateral and canalicular bile acid transport proteins in rat liver. J Biol Chem 1995; 270: 208416.
  • 42
    Gao B, St Pierre MV, Stieger B, Meier PJ. Differential expression of bile salt and organic anion transporters in developing rat liver. J Hepatol 2004; 41: 2018.
  • 43
    Cao J, Huang L, Liu Y, et al. Differential regulation of hepatic bile salt and organic anion transporters in pregnant and postpartum rats and the role of prolactin. Hepatology 2001; 33: 1407.
  • 44
    Arrese M, Trauner M, Ananthanarayanan M, et al. Down-regulation of the Na+/taurocholate cotransporting polypeptide during pregnancy in the rat. J Hepatol 2003; 38: 14855.
  • 45
    Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch 2004; 447: 56670.
  • 46
    Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64: 63566.
  • 47
    Cui Y, Konig J, Leier I, Buchholz U, Keppler D. Hepatic uptake of bilirrubin and its conjugates by the human organic anion-transporting polypeptide SLC21A6. J Biol Chem 2001; 276: 962630.
  • 48
    Briz O, Serrano MA, Macias RI, Gonzalez-Gallego J, Marin JJG. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J 2003; 371: 897905.
  • 49
    Briz O, Romero MR, Martinez-Becerra P, et al. OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes? J Biol Chem 2006; 281: 3032635.
  • 50
    Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 2001; 120: 52533.
  • 51
    Hänggi E, Grundschober AF, Leuthold S, Meier PJ, St-Pierre MV. Functional analysis of the extracellular cysteine residues in the human organic anion transporting polypeptide, OATP2B1. Mol Pharmacol 2006; 70: 80617.
  • 52
    Dubuisson C, Cresteil D, Desrochers M, Decimo D, Hadchouel M, Jacquemin E. Ontogenic expression of the Na(+)-independent organic anion transporting polypeptide (oatp) in rat liver and kidney. J Hepatol 1996; 25: 93240.
  • 53
    Cheng X, Maher J, Chen C, Klaassen CD. Tissue distribution and ontogeny of mouse organic anion transporting polypeptides (Oatps). Drug Metab Dispos 2005; 33: 106273.
  • 54
    Angeletti RH, Bergwerk AJ, Novikoff PM, Wolkoff AW. Dichotomous development of the organic anion transport protein in liver and choroid plexus. Am J Physiol 1998; 275: C8827.
  • 55
    Cao J, Stieger B, Meier PJ, Vore M. Expression of rat hepatic multidrug resistance-associated proteins and organic anion transporters in pregnancy. Am J Physiol 2002; 283: G75766.
  • 56
    Suzuki H, Sugiyama Y. Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin Liver Dis 2000; 20: 25163.
  • 57
    Briz O, Serrano MA, Rebollo N, et al. Carriers involved in targeting the cytostatic bile acid–cisplatin derivatives cis-diamminechloro–cholylglycinate–platinum(II) and cis-diammine–bisursodeoxycholate–platinum(II) toward liver cells. Mol Pharmacol 2002; 61: 85360.
  • 58
    Alnouti Y, Petrick JS, Klaassen CD. Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos 2006; 34: 47782.
  • 59
    Martel F, Martins MJ, Calhau C, Hipolito-Reis C, Azevedo I. Postnatal development of organic cation transport in the rat liver. Pharmacol Res 1998; 37: 1316.
  • 60
    Cabral DJ, Small DM, Lilly HS, Hamilton JA. Transbilayer movement of bile acids in model membranes. Biochemistry 1987; 26: 18014.
  • 61
    Dumaswala R, Setchell KD, Moyer MS, Suchy FJ. An anion exchanger mediates bile acid transport across the placental microvillous membrane. Am J Physiol 1993; 264: G101623.
  • 62
    Iioka H, Hisanaga H, Akada S, et al. Characterization of human placental activity for transport of taurocholate, using brush-border (microvillous) membrane vesicles. Placenta 1993; 14: 93102.
  • 63
    Marin JJ, Bravo P, El-Mir MY, Serrano MA. ATP-dependent bile acid transport across microvillous membrane of human term trophoblast. Am J Physiol 1995; 268: G68594.
  • 64
    El-Mir MY, Eleno N, Serrano MA, Bravo P, Marin JJG. Bicarbonate-induced activation of taurocholate transport across the basal plasma membrane of the human term trophoblast. Am J Physiol 1991; 260: G88794.
  • 65
    Serrano MA, Bayon JE, Pascolo L, et al. Evidence for carrier-mediated transport of unconjugated bilirubin across plasma membrane vesicles from human placental trophoblast. Placenta 2002; 23: 52735.
  • 66
    Serrano MA, Macias RI, Vallejo M, et al. Effect of ursodeoxycholic acid on the impairment induced by maternal cholestasis in the rat placenta–maternal liver tandem excretory pathway. J Pharmacol Exp Ther 2003; 305: 51524.
  • 67
    Fujiwara K, Adachi H, Nishio T, et al. Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 2001; 142: 200512.
  • 68
    Sato K, Sugawara J, Sato T, et al. Expression of organic anion transporting polypeptide E (OATP-E) in human placenta. Placenta 2003; 24: 1448.
  • 69
    St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrin Metab 2002; 87: 185663.
  • 70
    Koepsell H, Endou H. The SLC22 drug transporter family. Pflugers Arch 2004; 447: 66676.
  • 71
    Cha SH, Sekine T, Kusuhara H, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 2000; 275: 450712.
  • 72
    Kekuda R, Prasad PD, Wu X, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 1998; 273: 159719.
  • 73
    Sata R, Ohtani H, Tsujimoto M, et al. Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther 2005; 315: 88895.
  • 74
    Schneider E, Machavoine F, Pleau JM, et al. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels. J Exp Med 2005; 202: 38793.
  • 75
    Muller M, Mayer R, Hero U, Keppler D. ATP-dependent transport of amphiphilic cations across the hepatocyte canalicular membrane mediated by Mdr1 P-glycoprotein. FEBS Lett 1994; 343: 16872.
  • 76
    Van Kalken CK, Giaccone G, Van Der Valk P, et al. Multidrug resistance gene (P-glycoprotein) expression in the human fetus. Am J Pathol 1992; 141: 106372.
  • 77
    St-Pierre MV, Serrano MA, Lauper U, Marin JJG, Meier PJ. Identification of bile salt transporters in human and rat placenta. Placenta 1999; 20: A62.
  • 78
    Patel P, Weerasekera N, Hitchins M, Boyd CA, Johnston DG, Williamson C. Semi quantitative expression analysis of MDR3, FIC1, BSEP, OATPA, OATP-C, OATP-D, OATP-E and NTCP gene transcripts in 1st and 3rd trimester human placenta. Placenta 2003; 24: 3944.
  • 79
    Lecureur V, Sun D, Hargrove P, et al. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol 2000; 57: 2435.
  • 80
    Tomer G, Ananthanarayanan M, Weymann A, Balasubramanian N, Suchy FJ. Differential developmental regulation of rat liver canalicular membrane transporters Bsep and Mrp2. Pediatr Res 2003; 53: 28894.
  • 81
    Chen HL, Chen HL, Liu YJ, et al. Developmental expression of canalicular transporter genes in human liver. J Hepatol 2005; 43: 4727.
  • 82
    Smith AJ, Van Helvoort A, Van Meer G, et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 2000; 275: 235309.
  • 83
    Evseenko DA, Paxton JW, Keelan JA. ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol 2006; 290: R135765.
  • 84
    Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol 2005; 289: R9639.
  • 85
    Paulusma CC, Groen A, Kunne C, et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 2006; 44: 195204.
  • 86
    Soroka CJ, Lee JM, Azzaroli F, Boyer JL. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 2001; 33: 78391.
  • 87
    Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 2001; 34: 3519.
  • 88
    Vos TA, Hooiveld GJ, Koning H, et al. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology 1998; 28: 163744.
  • 89
    Jedlitschky G, Hoffmann U, Kroemer HK. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2006; 3: 35166.
  • 90
    Borst P, De Wolf C, Van De Wetering K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 2007; 453: 66173.
  • 91
    Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 2003; 38: 37484.
  • 92
    Matsuzaki Y, Nakano A, Jiang QJ, Pulkkinen L, Uitto J. Tissue-specific expression of the ABCC6 gene. J Invest Dermatol 2005; 125: 9005.
  • 93
    Ilias A, Urban Z, Seidl TL, et al. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem 2002; 277: 168607.
  • 94
    Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflugers Arch 2007; 453: 67584.
  • 95
    Kao HH, Huang JD, Chang MS. cDNA cloning and genomic organization of the murine MRP7, a new ATP-binding cassette transporter. Gene 2002; 286: 299306.
  • 96
    St-Pierre MV, Serrano MA, Macias RI, et al. Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol 2000; 279: R1495503.
  • 97
    Leazer TM, Klaassen CD. The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos 2003; 31: 15367.
  • 98
    Meyer Zu Schwabedissen HE, Grube M, Heydrich B, et al. Expression, localization, and function of MRP5 (ABCC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts: effects of gestational age and cellular differentiation. Am J Pathol 2005; 166: 3948.
  • 99
    Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004; 279: 2421825.
  • 100
    Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 2002; 99: 1564954.
  • 101
    Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 2005; 4: 18794.
  • 102
    Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998; 58: 53379.
  • 103
    Ceckova M, Libra A, Pavek P, et al. Expression and functional activity of breast cancer resistance protein (BCRP, ABCG2) transporter in the human choriocarcinoma cell line BeWo. Clin Exp Pharmacol Physiol 2006; 33: 5865.
  • 104
    Janvilisri T, Shahi S, Venter H, Balakrishnan L, Van Veen HW. Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2). Biochem J 2005; 385: 41926.
  • 105
    Staud F, Vackova Z, Pospechova K, et al. Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. J Pharmacol Exp Ther 2006; 319: 5362.
  • 106
    Ballatori N, Christian WV, Lee JY, et al. OSTalpha–OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 2005; 42: 12709.
  • 107
    Boyer JL, Trauner M, Mennone A, et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha–OSTbeta in cholestasis in humans and rodents. Am J Physiol 2006; 290: G112430.
  • 108
    Lee H, Zhang Y, Lee FY, et al. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 2006; 47: 20114.
  • 109
    Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 2000; 58: 33540.
  • 110
    Wagner M, Trauner M. Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepatic cholestasis. Ann Hepatol 2005; 4: 7799.
  • 111
    Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 2001; 276: 1581622.
  • 112
    Qiao L, Han SI, Fang Y, et al. Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol Cell Biol 2003; 23: 305266.
  • 113
    Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002; 298: 7149.
  • 114
    Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278: 943540.
  • 115
    Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 13625.
  • 116
    Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 13658.
  • 117
    Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3: 54353.
  • 118
    Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharmacol 2006; 3: 23151.
  • 119
    Perez MJ, Macias RIR, Marin JJG. Maternal cholestasis induces placental oxidative stress and apoptosis. Protective effect of ursodeoxycholic acid. Placenta 2006; 27: 3441.
  • 120
    Perez MJ, Macias RI, Duran C, Monte MJ, Gonzalez-Buitrago JM, Marin JJG. Oxidative stress and apoptosis in fetal rat liver induced by maternal cholestasis. Protective effect of ursodeoxycholic acid. J Hepatol 2005; 43: 32432.
  • 121
    Cheng X, Maher J, Dieter MZ, Klaassen CD. Regulation of mouse organic anion-transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab Dispos 2005; 33: 127682.
  • 122
    Stroup D, Crestani M, Chiang JY. Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A. Am J Physiol 1997; 273: G50817.
  • 123
    Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000; 275: 1091824.
  • 124
    Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 2004; 14: 25060.
  • 125
    Marrapodi M, Chiang JY. Peroxisome proliferator-activated receptor alpha (PPARalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Lipid Res 2000; 41: 51420.
  • 126
    Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 2006; 68: 15991.
  • 127
    Stedman CA, Liddle C, Coulter SA, et al. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci USA 2005; 102: 20638.
  • 128
    Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 2001; 98: 336974.
  • 129
    Xie W, Radominska-Pandya A, Shi Y, et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 2001; 98: 337580.
  • 130
    Yamamoto Y, Moore R, Hess HA, et al. Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem 2006; 281: 1662531.
  • 131
    Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433: 397412.
  • 132
    Chen W, Chiang JY. Regulation of human sterol 27-hydroxylase gene (CYP27A1) by bile acids and hepatocyte nuclear factor 4alpha (HNF4alpha). Gene 2003; 313: 7182.
  • 133
    Zhang M, Chiang JY. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem 2001; 276: 416909.
  • 134
    Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 2004; 40: 53951.
  • 135
    Goodwin B, Hodgson E, D'Costa DJ, et al. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 2002; 62: 35965.
  • 136
    Kliewer SA, Moore JT, Wade L, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92: 7382.
  • 137
    Bertilsson G, Heidrich J, Svensson K, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 1998; 95: 1220813.
  • 138
    Blumberg B, Sabbagh W Jr, Juguilon H, et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 1998; 12: 3195205.
  • 139
    Cheng X, Maher J, Dieter MZ, Klaassen CD. Regulation of mouse organic anion-transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab Dispos 2005; 33: 127682.
  • 140
    Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 2000; 407: 9203.
  • 141
    Karpen SJ. Nuclear receptor regulation of hepatic function. J Hepatol 2002; 36: 83250.
  • 142
    Pircher PC, Kitto JL, Petrowski ML, et al. Farnesoid X receptor regulates bile acid–amino acid conjugation. J Biol Chem 2003; 278: 2770311.
  • 143
    Sugatani J, Kojima H, Ueda A, et al. The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology 2001; 33: 12328.
  • 144
    Barbier O, Torra IP, Sirvent A, et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 2003; 124: 192640.
  • 145
    Song CS, Echchgadda I, Baek BS, et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 2001; 276: 4254956.
  • 146
    Assem M, Schuetz EG, Leggas M, et al. Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice. J Biol Chem 2004; 279: 222507.
  • 147
    Sonoda J, Xie W, Rosenfeld JM, et al. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci USA 2002; 99: 138016.
  • 148
    Echchgadda I, Song CS, Roy AK, Chatterjee B. Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 2004; 65: 7209.
  • 149
    Eloranta JJ, Jung D, Kullak-Ublick GA. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol 2006; 20: 6579.
  • 150
    Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126: 32242.
  • 151
    Jung D, Podvinec M, Meyer UA, et al. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 2002; 122: 195466.
  • 152
    Wagner M, Halilbasic E, Marschall HU, et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 2005; 42: 42030.
  • 153
    Dawson PA, Hubbert M, Haywood J, et al. The heteromeric organic solute transporter alpha–beta, Ostalpha–Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 2005; 280: 69608.
  • 154
    Zollner G, Wagner M, Moustafa T, et al. Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol 2006; 290: G92332.
  • 155
    Okuwaki M, Takada T, Iwayanagi Y, et al. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm Res 2007; 24: 3908.
  • 156
    Yu J, Lo JL, Huang L, et al. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem 2002; 277: 314417.
  • 157
    Huang L, Zhao A, Lew JL, et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003; 278: 5108590.
  • 158
    Kast HR, Goodwin B, Tarr PT, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002; 277: 290815.
  • 159
    Maher JM, Cheng X, Slitt AL, Dieter MZ, Klaassen CD. Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab Dispos 2005; 33: 95662.
  • 160
    Wagner M, Fickert P, Zollner G, et al. Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 2003; 125: 82538.
  • 161
    Teng S, Jekerle V, Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos 2003; 31: 12969.
  • 162
    McCarthy TC, Li X, Sinal CJ. Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 2005; 280: 2323242.
  • 163
    Moffit JS, Aleksunes LM, Maher JM, Scheffer GL, Klaassen CD, Manautou JE. Induction of hepatic transporters multidrug resistance-associated proteins (Mrp) 3 and 4 by clofibrate is regulated by peroxisome proliferator-activated receptor alpha. J Pharmacol Exp Ther 2006; 317: 53745.
  • 164
    Szatmari I, Vamosi G, Brazda P, et al. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem 2006; 281: 2381223.
  • 165
    Meier Y, Eloranta JJ, Kullak-Ublick GA. ABCG2, encoding the human breast cancer resistance protein (BCRP), is transactivated by the peroxisome proliferator-activated receptor-γ (PPARγ). Hepatology 2006; 44: 5956.
  • 166
    Ee PL, Kamalakaran S, Tonetti D, He X, Ross DD, Beck WT. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 2004; 64: 124751.
  • 167
    Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2: 21725.
  • 168
    Robinson-Rechavi M, Carpentier AS, Duffraisse M, Laudet V. How many nuclear hormone receptors are there in the human genome? Trends Genet 2001; 17: 5546.
  • 169
    Francis GA, Fayard E, Picard F, Auwerx J. Nuclear receptors and the control of metabolism. Annu Rev Physiol 2003; 65: 261311.
  • 170
    Huang W, Zhang J, Chua SS, et al. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc Natl Acad Sci USA 2003; 100: 415661.
  • 171
    Guo GL, Lambert G, Negishi M, et al. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 2003; 278: 4506271.
  • 172
    Seol W, Chung M, Moore DD. Novel receptor interaction and repression domains in the orphan receptor SHP. Mol Cell Biol 1997; 17: 712631.
  • 173
    Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 1996; 272: 13369.
  • 174
    Nishizawa H, Yamagata K, Shimomura I, et al. Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation. J Biol Chem 2002; 277: 158692.
  • 175
    Kassam A, Capone JP, Rachubinski RA. The short heterodimer partner receptor differentially modulates peroxisome proliferator-activated receptor alpha-mediated transcription from the peroxisome proliferator-response elements of the genes encoding the peroxisomal beta-oxidation enzymes acyl-CoA oxidase and hydratase–dehydrogenase. Mol Cell Endocrinol 2001; 176: 4956.
  • 176
    Varas SM, Jahn GA. The expression of estrogen, prolactin, and progesterone receptors in mammary gland and liver of female rats during pregnancy and early postpartum: regulation by thyroid hormones. Endocr Res 2005; 31: 35770.
  • 177
    Sweeney TR, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. Decreased nuclear hormone receptor expression in the livers of mice in late pregnancy. Am J Physiol Endocrinol Metab 2006; 290: E131320.
  • 178
    Mendelson CR, Kamat A. Mechanisms in the regulation of aromatase in developing ovary and placenta. J Steroid Biochem Mol Biol 2007; 106: 6270.
  • 179
    Stephanou A, Ross R, Handwerger S. Regulation of human placental lactogen expression by 1,25-dihydroxyvitamin D3. Endocrinology 1994; 135: 26516.
  • 180
    Shi QY, Kong BH, Ma KD, Zhang XL, Jiang S. Effects of ursodeoxycholic acid on the liver plasma membrane fluidity, hepatic glutathione concentration, hepatic estrogen receptors and progesterone receptors in pregnant rats with ethinylestradiol and progesterone induced intrahepatic cholestasis. Zhonghua Fu Chan Ke Za Zhi 2003; 38: 6802.
  • 181
    Wang Q, Fujii H, Knipp GT. Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 2002; 23: 66171.
  • 182
    Fournier T, Handschuh K, Tsatsaris V, Guibourdenche J, Evain-Brion D. Role of nuclear receptors and their ligands in human trophoblast invasion. J Reprod Immunol 2008 (in press).
  • 183
    Vyhlidal CA, Gaedigk R, Leeder JS. Nuclear receptor expression in fetal and pediatric liver: correlation with CYP3A expression. Drug Metab Dispos 2006; 34: 1317.
  • 184
    Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol 2005; 231: 7585.
  • 185
    Balasubramaniyan N, Shahid M, Suchy FJ, Ananthanarayanan M. Multiple mechanisms of ontogenic regulation of nuclear receptors during rat liver development. Am J Physiol 2005; 288: G25160.
  • 186
    Sakamoto A, Kawasaki T, Kazawa T, et al. Expression of liver X receptor alpha in rat fetal tissues at different developmental stages. J Histochem Cytochem 2007; 55: 6419.
  • 187
    Segura C, Alonso M, Fraga C, Garcia-Caballero T, Dieguez C, Perez-Fernandez R. Vitamin D receptor ontogenesis in rat liver. Histochem Cell Biol 1999; 112: 1637.
  • 188
    Kamiya A, Inoue Y, Gonzalez FJ. Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development. Hepatology 2003; 37: 137584.
  • 189
    Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am J Physiol 1997; 273: G8428.
  • 190
    Mukhopadhyay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate. Hepatology 1998; 28: 162936.
  • 191
    McConkey M, Gillin H, Webster CR, Anwer MS. Cross-talk between protein kinases Czeta and B in cyclic AMP-mediated sodium taurocholate co-transporting polypeptide translocation in hepatocytes. J Biol Chem 2004; 279: 208828.
  • 192
    Kipp H, Pichetshote N, Arias IM. Transporters on demand: intrahepatic pools of canalicular ATP-binding cassette transporters in rat liver. J Biol Chem 2001; 276: 721824.
  • 193
    Kipp H, Arias IM. Intracellular trafficking and regulation of canalicular ATP-binding cassette transporters. Semin Liver Dis 2000; 20: 33951.
  • 194
    Boyer JL, Soroka C. Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology 1995; 109: 160011.
  • 195
    Roelofsen H, Soroka C, Dietrich K, Boyer JL. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J Cell Sci 1998; 111: 113745.
  • 196
    Beuers U, Bilzer M, Chittattu A, et al. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 2001; 33: 120616.
  • 197
    Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83: 63371.
  • 198
    Dombrowski F, Stieger B, Beuers U. Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab Invest 2006; 86: 16674.
  • 199
    Tateishi T, Watanabe M, Nakura H, Tanaka M, Kumai T, Kobayashi S. Liver damage induced by bile duct ligation affects CYP isoenzymes differently in rats. Pharmacol Toxicol 1998; 82: 8992.
  • 200
    Pasanen M, Helin-Martikainen HL, Pelkonen O, Kirkinen P. Intrahepatic cholestasis of pregnancy impairs the activities of human placental xenobiotic and steroid metabolizing enzymes in vitro. Placenta 1997; 18: 3741.
  • 201
    Pascual MJ, Serrano MA, El-Mir MY, Macias RIR, Jimenez F, Marin JJG. Relationship between asymptomatic hypercholanaemia of pregnancy and progesterone metabolism. Clin Sci 2002; 102: 58793.
  • 202
    Castaño G, Lucangioli S, Sookoian S, et al. Bile acid profiles by capillary electrophoresis in intrahepatic cholestasis of pregnancy. Clin Sci (Lond) 2006; 110: 45965.
  • 203
    Lammert F, Marschall HU, Glantz A, Matern S. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management. J Hepatol 2000; 33: 101221.
  • 204
    Arrese M, Reyes H. Intrahepatic cholestasis of pregnancy: a past and present riddle. Ann Hepatol 2006; 5: 2025.
  • 205
    Keitel V, Vogt C, Haussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 2006; 131: 6249.
  • 206
    Pauli-Magnus C, Lang T, Meier Y, et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 2004; 14: 91102.
  • 207
    Savander M, Ropponen A, Avela K, et al. Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy. Gut 2003; 52: 10259.
  • 208
    Cohen L, Lewis C, Arias IM. Pregnancy, oral contraceptives, and chronic familial jaundice with predominantly conjugated hyperbilirubinemia (Dubin–Johnson syndrome). Gastroenterology 1972; 62: 118290.
  • 209
    Lindberg MC. Hepatobiliary complications of oral contraceptives. J Gen Intern Med 1992; 7: 199209.
  • 210
    Bull LN, Van Eijk MJ, Pawlikowska L, et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 1998; 18: 21924.
  • 211
    De Pagter AG, Van Berge Henegouwen GP, Ten Bokkel Huinink JA, Brandt KH. Familial benign recurrent intrahepatic cholestasis. Interrelation with intrahepatic cholestasis of pregnancy and from oral contraceptives? Gastroenterology 1976; 71: 2027.
  • 212
    Whitington PF, Freese DK, Alonso EM, Schwarzenberg SJ, Sharp HL. Clinical and biochemical findings in progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 1994; 18: 13441.
  • 213
    Lovisetto P, Raviolo P, Rizzetto M, Marchi L, Actis GC, Verme G. Benign recurrent intrahepatic cholestasis. A clinico-pathologic study. Ric Clin Lab 1990; 20: 1927.
  • 214
    Strautnieks SS, Kagalwalla AF, Tanner MS, et al. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet 1997; 61: 6303.
  • 215
    Van Mil SW, Van Der Woerd WL, Van Der Brugge G, et al. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 2004; 127: 37984.
  • 216
    Kubitz R, Keitel V, Scheuring S, Kohrer K, Haussinger D. Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol 2006; 40: 1715.
  • 217
    De Vree JM, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 1998; 95: 2827.
  • 218
    Jacquemin E, Cresteil D, Manouvrier S, Boute O, Hadchouel M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet 1999; 353: 2101.
  • 219
    Dixon PH, Weerasekera N, Linton KJ, et al. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet 2000; 9: 120917.
  • 220
    Schneider G, Paus TC, Kullak-Ublick GA, et al. Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology 2007; 45: 1508.
  • 221
    Reyes H, Simon FR. Intrahepatic cholestasis of pregnancy: an estrogen-related disease. Semin Liver Dis 1993; 13: 289301.
  • 222
    Gonzalez MC, Reyes H, Arrese M, et al. Intrahepatic cholestasis of pregnancy in twin pregnancies. J Hepatol 1989; 9: 8490.
  • 223
    Bacq Y, Sapey T, Brechot MC, Pierre F, Fignon A, Dubois F. Intrahepatic cholestasis of pregnancy: a French prospective study. Hepatology 1997; 26: 35864.
  • 224
    Reyes H, Sjovall J. Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann Med 2000; 32: 94106.
  • 225
    Sjovall J, Sjovall K. Steroid sulphates in plasma from pregnant women with pruritus and elevated plasma bile acid levels. Ann Clin Res 1970; 2: 32137.
  • 226
    Eriksson H, Gustafsson JA, Sjoval J, Sjoval K. Excretion of neutral steroids in urine and faeces of women with intrahepatic cholestasis of pregnancy. Steroids Lipids Res 1972; 3: 3048.
  • 227
    Giusti G, Piccinino F, Ricciardi I, Delrio G, Sagnelli E, Manzillo G. Abnormal steroid sulfate in plasma of women with intrahepatic cholestasis of pregnancy. Acta Hepatogastroenterol 1979; 26: 2036.
  • 228
    Vallejo M, Briz O, Serrano MA, Monte MJ, Marin JJG. Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol 2006; 44: 11507.
  • 229
    Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000; 118: 42230.
  • 230
    Huang L, Smit JW, Meijer DK, Vore M. Mrp2 is essential for estradiol-17beta(beta-D-glucuronide)-induced cholestasis in rats. Hepatology 2000; 32: 6672.
  • 231
    Crocenzi FA, Mottino AD, Cao J, et al. Estradiol-17beta-d-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol 2003; 285: G44959.
  • 232
    Mottino AD, Crocenzi FA, Pozzi EJ, Veggi LM, Roma MG, Vore M. Role of microtubules in estradiol-17beta-d-glucuronide-induced alteration of canalicular Mrp2 localization and activity. Am J Physiol 2005; 288: G32736.
  • 233
    Simon FR, Fortune J, Iwahashi M, Gartung C, Wolkoff A, Sutherland E. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 1996; 271: G104352.
  • 234
    Geier A, Dietrich CG, Gerloff T, et al. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta 2003; 1609: 8794.
  • 235
    Trauner M, Arrese M, Soroka CJ, et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 1997; 113: 25564.