SEARCH

SEARCH BY CITATION

References

  • 1
    Turley S, Dietschy JM. The metabolism and excretion of cholesterol by the liver. In: AriasIM, JakobyWB, PopperH, SchachterD, ShafritzDA., eds. The Liver: Biology and Pathobiology. New York: Raven Press, 1988; 61741.
  • 2
    Cohen DE. Hepatocellular transport and secretion of biliary lipids. Curr Opin Lipidol 1999; 10: 295302.
  • 3
    Oude Elferink RP, Groen AK. Mechanisms of biliary lipid secretion and their role in lipid homeostasis. Semin Liver Dis 2000; 20: 293305.
  • 4
    Zanlungo S, Rigotti A, Nervi F. Hepatic cholesterol transport from plasma into bile: implications for gallstone disease. Curr Opin Lipidol 2004; 15: 27986.
  • 5
    Wang HH, Portincasa P, Wang DQ. Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front Biosci 2008; 13: 40123.
  • 6
    Lo Sasso G, Petruzzelli M, Moschetta A. A translational view on the biliary lipid secretory network. Biochim Biophys Acta 2008; 1781: 7996.
  • 7
    Diehl AK. Epidemiology and natural history of gallstone disease. Gastroenterol Clin North Am 1991; 20: 119.
  • 8
    Amigo L, Zanlungo S, Mendoza H, et al. Risk factors and pathogenesis of cholesterol gallstones: state of the art. Eur Rev Med Pharmacol Sci 1999; 3: 2416.
  • 9
    Shaffer EA. Gallstone disease: epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol 2006; 20: 98196.
  • 10
    Petitti DB, Wingerd J, Pellegrin F, et al. Risk of vascular disease in women. Smoking, oral contraceptives, noncontraceptive estrogens, and other factors. JAMA 1979; 242: 11504.
  • 11
    Bortnichak EA, Freeman Jr DH, Ostfeld AM, et al. The association between cholesterol cholelithiasis and coronary heart disease in Framingham, Massachusetts. Am J Epidemiol 1985; 121: 1930.
  • 12
    Wysowski DK, Goldberg EL, Comstock GW, et al. A study of a possible association between breast cancer and gallbladder disease. Am J Epidemiol 1986; 123: 53243.
  • 13
    Kuipers F, Van Ree JM, Hofker MH, et al. Altered lipid metabolism in apolipoprotein E-deficient mice does not affect cholesterol balance across the liver. Hepatology 1996; 24: 2417.
  • 14
    Mensenkamp AR, Van Luyn MJ, Havinga R, et al. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice. J Hepatol 2004; 40: 599606.
  • 15
    Amigo L, Quiñones V, Mardones P, et al. Impaired biliary cholesterol secretion and decreased gallstone formation in apolipoprotein E-deficient mice fed a high cholesterol diet. Gastroenterology 2000; 118: 7729.
  • 16
    Gylling H, Kontula K, Miettinen TA. Cholesterol absorption and metabolism and LDL kinetics in healthy men with different apoprotein E phenotypes and apoprotein B Xba I and LDL receptor Pvu II genotypes. Arterioscler Thromb Vasc Biol 1995; 15: 20813.
  • 17
    Miettinen TA, Gylling H, Vanhanen H, et al. Cholesterol absorption, elimination, and synthesis related to LDL kinetics during varying fat intake in men with different apoprotein E phenotypes. Arterioscler Thromb 1992; 12: 104452.
  • 18
    Angelin B, Holmquist L, Leijd B, et al. Bile acid metabolism in familial dysbetalipoproteinaemia: studies in subjects with the apolipoprotein E-2/2 phenotype. Eur J Clin Invest 1990; 20: 1439.
  • 19
    Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007; 298: 13001.
  • 20
    Juvonen T, Kervinen K, Kairaluoma MI, et al. Gallstone cholesterol content is related to apolipoprotein E polymorphism. Gastroenterology 1993; 104: 180613.
  • 21
    Portincasa P, Van Erpecum KJ, Van De Meeberg PC, et al. Apolipoprotein E4 genotype and gallbladder motility influence speed of gallstone clearance and risk of recurrence after extracorporeal shock-wave lithotripsy. Hepatology 1996; 24: 5807.
  • 22
    Bertomeu A, Ros E, Zambon D, et al. Apolipoprotein E polymorphism and gallstones. Gastroenterology 1996; 111: 160310.
  • 23
    Fischer S, Dolu MH, Zundt B, et al. Apolipoprotein E polymorphism and lithogenic factors in gallbladder bile. Eur J Clin Invest 2001; 31: 78995.
  • 24
    Van Erpecum KJ, Van Berge-Henegouwen GP, Eckhardt ER, et al. Cholesterol crystallization in human gallbladder bile: relation to gallstone number, bile composition, and apolipoprotein E4 isoform. Hepatology 1998; 27: 150816.
  • 25
    Ko CW, Beresford SA, Alderman B, et al. Apolipoprotein E genotype and the risk of gallbladder disease in pregnancy. Hepatology 2000; 31: 1823.
  • 26
    Fischer S, Dolu MH, Zündt B, et al. Apolipoprotein E polymorphism and lithogenic factors in gallbladder bile. Eur J Clin Invest 2001; 31: 78995.
  • 27
    Hasegawa K, Terada S, Kubota K, et al. Effect of apolipoprotein E polymorphism on bile lipid composition and the formation of cholesterol gallstone. Am J Gastroenterol 2003; 98: 16059.
    Direct Link:
  • 28
    Jiang ZY, Han TQ, Suo GJ, et al. Polymorphisms at cholesterol 7alpha-hydroxylase, apolipoproteins B and E and low density lipoprotein receptor genes in patients with gallbladder stone disease. World J Gastroenterol 2004; 10: 150812.
  • 29
    Dixit M, Choudhuri G, Mittal B. Association of APOE-C1 gene cluster polymorphisms with gallstone disease. Dig Liver Dis 2006; 38: 397403.
  • 30
    Mella JG, Schirin-Sokhan R, Rigotti A, et al. Genetic evidence that apolipoprotein E4 is not a relevant susceptibility factor for cholelithiasis in two high-risk populations. J Lipid Res 2007; 48: 137885.
  • 31
    Dixit M, Choudhuri G, Keshri LJ, et al. Association of low density lipoprotein receptor related protein-associated protein (LRPAP1) gene insertion/deletion polymorphism with gallstone disease. J Gastroenterol Hepatol 2006; 21: 8479.
  • 32
    Dixit M, Choudhuri G, Mittal B. Association of lipoprotein receptor, receptor-associated protein, and metabolizing enzyme gene polymorphisms with gallstone disease: a case–control study. Hepatol Res 2006; 36: 619.
  • 33
    Juzyszyn Z, Kurzawski M, Modrzejewski A, et al. Low-density lipoprotein receptor-related protein-associated protein (LRPAP1) gene IVS5 insertion/deletion polymorphism is not a risk factor for gallstone disease in a Polish population. Dig Liver Dis 2008; 40: 1227.
  • 34
    Uppal H, Zhai Y, Gangopadhyay A, et al. Activation of liver X receptor sensitizes mice to gallbladder cholesterol crystallization. Hepatology 2008; 47: 133142.
  • 35
    Bishop JR, Stanford KI, Esko JD. Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol 2008; 19: 30713.
  • 36
    MacArthur JM, Bishop JR, Stanford KI, et al. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 2007; 117: 15364.
  • 37
    Cortés V, Rigotti A. Liver heparan sulfate proteoglycans: old molecules provide new insights on lipoprotein metabolism. Hepatology 2007; 45: 107880.
  • 38
    Ahlberg J, Angelin B, Einarsson K, et al. Biliary lipid composition in normo- and hyperlipoproteinemia. Gastroenterology 1980; 79: 904.
  • 39
    Jiang ZY, Parini P, Eggertsen G, et al. Increased expression of LXR alpha, ABCG5, ABCG8, and SR-BI in the liver from normolipidemic, nonobese Chinese gallstone patients. J Lipid Res 2008; 49: 46472.
  • 40
    Bothman KM, Bravo E. The role of lipoprotein cholesterol in biliary steroid secretion. Studies with in vivo experimental models. Prog Lipid Res 1995; 34: 7197.
  • 41
    Thornton JR, Heaton KW, Macfarlane DG. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation. Br Med J 1981; 283: 13524.
  • 42
    Petitti DB, Friedman GD, Klatsky AL. Association of a history of gallstone disease with a reduced concentration of high density lipoprotein cholesterol. N Engl J Med 1981; 304: 13968.
  • 43
    Thijs C, Knipschild P, Brombacher P. Serum lipids and gallstones: a case–control study. Gastroenterology 1990; 99: 8439.
  • 44
    Khanuja B, Cheah YC, Hunt M, et al. Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proc Natl Acad Sci USA 1995; 92: 772933.
  • 45
    Rigotti A, Amigo L, Quinones V, et al. Role of apolipoproteins A-I and E in controlling biliary lipid secretion in mice. Gastroenterology 1999; 116: A379.
  • 46
    Jolley CD, Dietschy JM, Turley SD. Induction of bile acid synthesis by cholesterol and cholestyramine feeding is unimpaired in mice deficient in apolipoprotein AI. Hepatology 2000; 32: 130916.
  • 47
    Groen AK, Bloks VW, Bandsma RH, et al. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J Clin Invest 2001; 108: 84350.
  • 48
    Juvonen T, Savolainen MJ, Kairaluoma MI, et al. Polymorphisms at the apoB, apoA-I, and cholesteryl ester transfer protein gene loci in patients with gallbladder disease. J Lipid Res 1995; 36: 80412.
  • 49
    Zhang M, Xiao L, Lin Q. Polymorphism at cholesteryl ester transfer protein gene loci in patients with gallstone. Hua Xi Yi Ke Da Xue Xue Bao 1999; 30: 6871.
  • 50
    Masson D, Staels B, Gautier T, et al. Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. J Lipid Res 2004; 45: 54350.
  • 51
    Harada LM, Amigo L, Cazita PM, et al. CETP expression enhances liver HDL-cholesteryl ester uptake but does not alter VLDL and biliary lipid secretion. Atherosclerosis 2007; 191: 3138.
  • 52
    Wang DQ, Zhang L, Wang HH. High cholesterol absorption efficiency and rapid biliary secretion of chylomicron remnant cholesterol enhance cholelithogenesis in gallstone-susceptible mice. Biochim Biophys Acta 2005; 1733: 909.
  • 53
    Amigo L, Mardones P, Ferrada C, et al. Biliary lipid secretion, bile acid metabolism, and gallstone formation are not impaired in hepatic lipase-deficient mice. Hepatology 2003; 38: 72634.
  • 54
    Cohen JC, Vega GL, Grundy SM. Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 1999; 10: 25967.
  • 55
    Rigotti A, Miettinen HE, Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev 2003; 24: 35787.
  • 56
    Wang DQ, Carey MC. Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. Biochim Biophys Acta 2002; 1583: 14150.
  • 57
    Miquel JF, Moreno M, Amigo L, et al. Expression and regulation of scavenger receptor class B type I (SR-BI) in gallbladder epithelium. Gut 2003; 52: 101724.
  • 58
    Lundasen T, Liao W, Angelin B, et al. Leptin induces the hepatic high density lipoprotein receptor scavenger receptor B type I (SR-BI) but not cholesterol 7alpha-hydroxylase (Cyp7a1) in leptin-deficient (ob/ob) mice. J Biol Chem 2003; 278: 432248.
  • 59
    Hyogo H, Roy S, Paigen B, et al. Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J Biol Chem 2002; 277: 3411724.
  • 60
    Seedorf U, Ellinghaus P, Roch Nofer J. Sterol carrier protein-2. Biochim Biophys Acta 2000; 1486: 4554.
  • 61
    Baum CL, Reschly EJ, Gayen AK, et al. Sterol carrier protein-2 overexpression enhances sterol cycling and inhibits cholesterol ester synthesis and high density lipoprotein cholesterol secretion. J Biol Chem 1997; 272: 64908.
  • 62
    Puglielli L, Rigotti A, Amigo L, et al. Modulation of intrahepatic cholesterol trafficking: evidence by in vivo antisense treatment for the involvement of sterol carrier protein-2 in newly synthesized cholesterol transport into rat bile. Biochem J 1996; 317: 6817.
  • 63
    Zanlungo S, Amigo L, Mendoza H, et al. Overexpression of sterol carrier protein-2 leads to altered lipid metabolism and enhanced enterohepatic sterol circulation in mice. Gastroenterology 2000; 119: 170819.
  • 64
    Amigo L, Zanlungo S, Miquel JF, et al. Hepatic overexpression of sterol carrier protein-2 inhibits VLDL production and reciprocally enhances biliary lipid secretion. J Lipid Res 2003; 44: 399407.
  • 65
    Fuchs M, Lammert F, Wang DQ-H, et al. Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice. Biochem J 1996; 336: 337.
  • 66
    Ito T, Kawata S, Imai Y, et al. Hepatic cholesterol metabolism in patients with cholesterol gallstones: enhanced intracellular transport of cholesterol. Gastroenterology 1996; 110: 161927.
  • 67
    Cui NQ, Zhang SK, Cui YF, et al. Overexpression of sterol carrier protein-2 mRNA in patients with cholesterol gallstones. Hepatobiliary Pancreat Dis Int 2005; 4: 11720.
  • 68
    Fuchs M, Hafer A, Munch C, et al. Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J Biol Chem 2001; 276: 4805865.
  • 69
    Ko DC, Gordon MD, Jin JY, Scott MP. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol Biol Cell 2001; 12: 60114.
  • 70
    Amigo L, Mendoza H, Castro J, et al. Relevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice. Hepatology 2002; 36: 81928.
  • 71
    Vanier MT, Millat G. Structure and function of the NPC2 protein. Biochim Biophys Acta 2004; 1685: 1421.
  • 72
    Klein A, Amigo L, Retamal MJ, et al. NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis. Hepatology 2006; 43: 12613.
  • 73
    Ponting CP, Aravind L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci 1999; 24: 1302.
  • 74
    Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem 2003; 278: 221836.
  • 75
    Hall EA, Ren S, Hylemon PB, et al. Detection of the steroidogenic acute regulatory protein, StAR, in human liver cells. Biochim Biophys Acta 2005; 1733: 1119.
  • 76
    Ren S, Hylemon PB, Marques D, et al. Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse. Hepatology 2004; 40: 9107.
  • 77
    Soccio RE, Adams RM, Maxwell KN, et al. Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress. J Biol Chem 2005; 280: 194108.
  • 78
    Tichauer JE, Morales MG, Amigo L, et al. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse. World J Gastroenterol 2007; 13: 30719.
  • 79
    Kishida T, Kostetskii I, Zhang Z, et al. Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J Biol Chem 2004; 279: 1927685.
  • 80
    Dawson PA, Van der Westhuyzen DR, Goldstein JL, Brown MS. Purification of oxysterol binding protein from hamster liver cytosol. J Biol Chem 1989; 264: 904652.
  • 81
    Lehto M, Laitinen S, Chinetti G, et al. The OSBP-related protein family in humans. J Lipid Res 2001; 42: 120313.
  • 82
    Yang H. Nonvesicular sterol transport: two protein families and a sterol sensor? Trends Cell Biol 2006; 16: 42732.
  • 83
    Olkkonen VM, Johansson M, Suchanek M, et al. The OSBP-related proteins (ORPs): global sterol sensors for co-ordination of cellular lipid metabolism, membrane trafficking and signalling processes? Biochem Soc Trans 2006; 34: 38991.
  • 84
    Lagace TA, Byers DM, Cook HW, et al. Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterol-binding protein is dependent on the pleckstrin homology domain. Biochem J 1997; 326: 20513.
  • 85
    Laitinen S, Lehto M, Lehtonen S, et al. ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism. J Lipid Res 2002; 43: 24555.
  • 86
    Hynynen R, Laitinen S, Käkelä R, et al. Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochem J 2005; 390: 27383.
  • 87
    Wang C, Jebailey L, Ridgway ND. Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments. Biochem J 2002; 361: 46172.
  • 88
    Amigo L, Castro J, Miquel JF, et al. Inactivation of hepatic microsomal triglyceride transfer protein protects mice from diet-induced gallstones. Gastroenterology 2006; 131: 18708.
  • 89
    Castro J, Amigo L, Miquel JF, et al. Increased activity of hepatic microsomal triglyceride transfer protein and bile acid synthesis in gallstone disease. Hepatology 2007; 45: 12616.
  • 90
    Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med 2007; 356: 14856.
  • 91
    Buhman KF, Accad M, Farese RV. Mammalian acyl-CoA: cholesterol acyltransferases. Biochim Biophys Acta 2000; 1529: 14254.
  • 92
    Rudel LL, Lee RG, Cockman TL. Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol 2001; 12: 1217.
  • 93
    Chang TY, Chang CC, Lin S, et al. Roles of acyl-coenzyme A: cholesterol acyltransferase-1 and -2. Curr Opin Lipidol 2001; 12: 28996.
  • 94
    Nervi F, Bronfman M, Allalon W, et al. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification. J Clin Invest 1984; 74: 222637.
  • 95
    Stone BG, Erickson SK, Craig WY, et al. Regulation of rat biliary cholesterol secretion by agents that alter intrahepatic cholesterol metabolism. Evidence for a distinct biliary precursor pool. J Clin Invest 1985; 76: 177381.
  • 96
    Stone BG, Evans CD. Evidence for a common biliary cholesterol and VLDL cholesterol precursor pool in rat liver. J Lipid Res 1992; 33: 166575.
  • 97
    Ioriya K, Nishimura T, Ohashi N. Effect of SMP-500, a novel ACAT inhibitor, on hepatic cholesterol disposition in rats. Lipids 2002; 37: 395400.
  • 98
    Smith JL, Hardie IR, Pillay SP, De Jersey J. Hepatic acyl-coenzyme A: cholesterol acyltransferase activity is decreased in patients with cholesterol gallstones. J Lipid Res 1990; 31: 19932000.
  • 99
    Buhman KK, Accad M, Novak S, et al. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 2000; 6: 13417.
  • 100
    Brown JM, Bell TA 3rd, Alger HM, et al. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 2008; 283: 1052234.
  • 101
    Zhao B, Song J, Ghosh S. Hepatic over-expression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport. J Lipid Res 2008; 49: 22127.
  • 102
    Sekiya M, Osuga J, Yahagi N, et al. Hormone-sensitive lipase is involved in hepatic cholesteryl ester hydrolysis. J Lipid Res 2008; 49: 182938.
  • 103
    Groen AK, Oude Elferink RP. Lipid transport into bile and role in bile formation. Curr Drug Targets Immune Endocr Metabol Disord 2005; 5: 1315.
  • 104
    Graf GA, Yu L, Li WP, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 2003; 278: 4827582.
  • 105
    Kosters A, Frijters RJ, Schaap FG, et al. Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 2003; 38: 7106.
  • 106
    Kamisako T, Ogawa H. Regulation of biliary cholesterol secretion is associated with ABCG5 and ABCG8 expressions in the rats: effects of diosgenin and ethinyl estradiol. Hepatol Res 2003; 26: 34852.
  • 107
    Wittenburg H, Lyons MA, Li R, et al. FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 2003; 125: 86881.
  • 108
    Bloks VW, Bakker-Van Waarde WM, Verkade HJ, et al. Down-regulation of hepatic and intestinal ABCG5 and ABCG8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes. Diabetologia 2004; 47: 10412.
  • 109
    Sabeva NS, Rouse EJ, Graf GA. Defects in the leptin axis reduce abundance of the ABCG5 ABCG8 sterol transporter in liver. J Biol Chem 2007; 282: 22397405.
  • 110
    Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002; 110: 67180.
  • 111
    Yu L, Hammer RE, Li-Hawkins J, et al. Disruption of ABCG5 and ABCG8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 2002; 99: 1623742.
  • 112
    Wittenburg H, Lyons MA, Li R, et al. Association of a lithogenic Abcg5/Abcg8 allele on chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice. Mamm Genome 2005; 16: 495504.
  • 113
    Biddinger SB, Haas JT, Yu BB, et al. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat Med 2008; 14: 77882.
  • 114
    Grundy SM. Cholesterol gallstones: a fellow traveler with metabolic syndrome? Am J Clin Nutr 2004; 80: 12.
  • 115
    Méndez-Sánchez N, Chavez-Tapia NC, Motola-Kuba D, et al. Metabolic syndrome as a risk factor for gallstone disease. World J Gastroenterol 2005; 11: 16537.
  • 116
    Nervi F, Miquel JF, Alvarez M, et al. Gallbladder disease is associated with insulin resistance in a high risk Hispanic population. J Hepatol 2006; 45: 299305.
  • 117
    Wang Y, Jiang ZY, Fei J, et al. ATP binding cassette G8 T400K polymorphism may affect the risk of gallstone disease among Chinese males. Clin Chim Acta 2007; 384: 805.
  • 118
    Grünhage F, Acalovschi M, Tirziu S, et al. Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol. Hepatology 2007; 46: 793801.
  • 119
    Buch S, Schafmayer C, Völzke H, et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet 2007; 39: 9959.
  • 120
    Lammert F, Miquel JF. Gallstone disease: from genes to evidence-based therapy. J Hepatol 2008; 48: S12435.
  • 121
    Altmann SW, Davis HR, Zhu LJ, et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303: 12014.
  • 122
    Yu L, Bharadwaj S, Brown JM, et al. Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J Biol Chem 2006; 281: 661624.
  • 123
    Temel RE, Tang W, Ma Y, et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 2007; 117: 196878.