• 1
    Blei AT, Omary R, Butterworth RF. Animal models of hepatic encephalopathy. In: BoultonAA, BakerGB, ButterworthRF, eds. Neuromethods, Vol. 22. Totowa, NJ, USA: Humana Press, 1992; 183222.
  • 2
    Chamuleau RA. Animal models of hepatic encephalopathy. Semin Liver Dis 1996; 16: 26570.
  • 3
    Traber P, Dal Canto M, Ganger D, Blei AT. Effect of body temperature on brain edema and encephalopathy in the rat after hepatic devascularization. Gastroenterology 1989; 96: 88591.
  • 4
    Potvin M, Morrison H, Finlayson E, et al. Cerebral abnormalities in hepatectomized rats with acute hepatic coma. Lab Invest 1984; 50: 5604.
  • 5
    Chung C, Gottstein J, Blei AT. Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 2001; 34: 24954.
  • 6
    Swain M, Butterworth RF, Blei AT. Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 1992; 15: 44953.
  • 7
    Chatauret N, Rose C, Therrien G, Butterworth RF. Mild hypothermia prevents cerebral edema and CSF lactate accumulation in acute liver failure. Metab Brain Dis 2001; 16: 95102.
  • 8
    Albrecht J. Cerebral RNA synthesis in experimental hepatogenic encephalopathy. J Neurosci Res 1981; 6: 5538.
  • 9
    Zimmerman C, Ferenci P, Pifl C, et al. Hepatic encephalopathy in thioacetamide-induced acute liver failure in rats: characterization of an improved model and study of amino acid-ergic neurotransmission. Hepatology 1989; 9: 594601.
  • 10
    Keppler D, Lesch R, Reutter W, Decker K. Experimental hepatitis induced by d-galactosamine. Exp Mol Pathol 1968; 9: 27990.
  • 11
    Traber PG, Dal Canto M, Ganger D, Blei AT. Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure. Hepatology 1987; 7: 12727.
  • 12
    Horowitz ME, Schafer DF, Molnar P. Increased blood–brain transfer in a rabbit model of acute liver failure. Gastroenterology 1983; 84: 100311.
  • 13
    Mullen KD, Schafer DF, Cuchi P, et al. Evaluation of the suitability of galactosamine-induced fulminant hepatic failure as a model of hepatic encephalopathy in the rat and the rabbit. In: SoetersPB, WilsonJHP, MeijerAJ, HolmE, eds. Advances in Ammonia Metabolism and Hepatic Encephalopathy. Amsterdam, the Netherlands: Elsevier, 1988; 20511.
  • 14
    Dixit V, Chang TMS. Brain edema and the blood brain barrier in galactosamine-induced fulminant hepatic failure rats. ASAIO Trans 1990; 36: 217.
  • 15
    Zaki AEO, Ede RJ, Davis M, Williams R. Experimental studies of blood brain barrier permeability in acute hepatic failure. Hepatology 1984; 4: 35963.
  • 16
    Geller D, Gammal SH, Mullen KD, Jones EA. An improved rat model of hepatic encephalopathy due to fulminant hepatic failure: the importance of supportive therapy. In: SoetersPB, WilsonJHP, MeijerAJ, HolmE, eds. Advances in Ammonia Metabolism and Hepatic Encephalopathy. Amsterdam, the Netherlands: Elsevier, 1988; 2137.
  • 17
    Albrecht J, Hilgier W, Łazarewicz JW, et al. Astrocytes in acute hepatic encephalopathy: metabolic properties and transport functions. In: NorenbergMD, et al., eds. Biochemical Pathology of Astrocytes. New York, NY, USA: R. Liss, 1988; 46576.
  • 18
    Belanger M, Côté J, Butterworth RF. Neurobiological characterization of an azoxymethane mouse model of acute liver failure. Neurochem Int 2006; 48: 43440.
  • 19
    Francavilla A, Makowka L, Polimeno L, et al. A dog model for acetaminophen-induced fulminant hepatic failure. Gastroenterology 1989; 96: 4708.
  • 20
    Okamoto H, Fujimura T, Yashiro K. Correlation between electroencephalogram, hepatic encephalopathy grade and biochemical indices in beagles with portacaval anastomosis. J Parent Ent Nutr 1985; 9: 32633.
  • 21
    Van Niekerk JLM, Koopman JP. Portacaval shunt in the rabbit, a model for encephalopathy. Z Versuchstierkd 1986; 28: 79.
  • 22
    Maddison JE, Dodd PR, Morrison M, et al. Plasma GABA, GABA-like activity and the brain GABA–benzodiazepine receptor complex in rats with chronic hepatic encephalopathy. Hepatology 1987; 7: 6218.
  • 23
    Hawkins PA, Dejoseph MR, Hawkins RA. Eliminating metabolic abnormalities of portacaval shunting by restoring normal liver blood flow. Am J Physiol 1996; 270: E103742.
  • 24
    Dejong CH, Deutz NE, Soeters PB. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding. J Neurochem 1993; 60: 104757.
  • 25
    Hindfelt B, Plum F, Duffy TE. Effects of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 1977; 59: 38696.
  • 26
    Butterworth RF, Girard G, Giguère JF. Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis. J Neurochem 1988; 51: 48690.
  • 27
    Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 1984; 65: 30511.
  • 28
    Dunn CW, Horton JW, Megison SM, Vuitch MF. Contribution of portal systemic shunt to Kupffer cell dysfunction in obstructive jaundice. J Surg Res 1991; 50: 2349.
  • 29
    Greve JW, Gouma DJ, Soeters PB, Buurman WA. Suppression of cellular immunity in obstructive jaundice is caused by endotoxins: a study with germ-free rats. Gastroenterology 1990; 98: 47885.
  • 30
    Rodrigo R, Jover R, Candela A, et al. Bile duct ligation plus hyperammonemia in rats reproduces the alterations in the modulation of soluble guanylate cyclase by nitric oxide in brain of cirrhotic patients. Neuroscience 2005; 130: 43543.
  • 31
    Chan CY, Huang SW, Wang TF, et al. Lack of detrimental effects of nitric oxide inhibition in bile duct-ligated rats with hepatic encephalopathy. Eur J Clin Invest 2004; 34: 1228.
  • 32
    Jover R, Rodrigo R, Felipo V, et al. Brain edema and inflammatory activation in bile duct ligated rats and diet-induced hyperammonemia: a model of hepatic encephalopathy in cirrhosis. Hepatology 2006; 43: 125766.
  • 33
    Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol 2002; 67: 25979.
  • 34
    Llansola M, Rodrigo R, Monfort P, et al. NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 2007; 22: 32135.
  • 35
    Norenberg MD. Role of astrocytes in hepatic encephalopathy. Neurochem Pathol 1987; 6: 1333.
  • 36
    Rodrigo R, Erceg S, Felipo V. Neurons exposed to ammonia reproduce the differential alteration in nitric oxide modulation of guanylate cyclase in cerebellum and cortex of patients with liver cirrhosis. Neurobiol Dis 2005; 19: 15061.
  • 37
    Ganz R, Swain M, Traber P, et al. Ammonia-induced swelling of rat cerebral cortical slices: implications for the pathogenesis of brain edema in acute hepatic failure. Metab Brain Dis 1989; 4: 21323.
  • 38
    Zieliñska M, Law RO, Albrecht J. Excitotoxic mechanism of cell swelling in rat cerebral cortical slices treated acutely with ammonia. Neurochem Int 2003; 43: 299303.
  • 39
    Monfort P, Erceg S, Piedrafita B, et al. Chronic liver failure in rats impairs glutamatergic synaptic transmission and long-term potentiation in hippocampus and learning ability. Eur J Neurosci 2007; 25: 210311.
  • 40
    Pidoplichko V, Dani J. Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci USA 2006; 103: 1137680.
  • 41
    Rodrigo R, Erceg S, Rodriguez-Diaz J, et al. Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure. J Neurochem 2007; 102: 5164.