Get access

External exoskeletal cavities in Coleoptera and their possible mycangial functions


Vasily V. Grebennikov, Entomology Research Laboratory, Ottawa Plant & Seed Laboratories, Canadian Food Inspection Agency, K. W. Neatby Bldg., 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada. Email:


This paper reviews the occurrence of external exoskeletal cavities in beetles and provides critical reassessment of their possible mycangial function. In most reported cases, the decision to attribute mycangial function to exoskeletal cavities was based solely on the combination of two factors: (i) observation of these cavities on beetle's body; and (ii) knowledge that this particular beetle species uses fungi as a food source. Such reasoning resulted in the assumption, occasionally premature and not supported by other evidence, that exoskeletal pits in the following families may function as mycangia: Rhysodidae, Ptiliidae, Staphylinidae, Hybosoridae, Scarabaeidae, Derodontidae, Ptinidae, Jacobsoniidae, Boganiidae, Cryptophagidae, Endomychidae, Erotylidae, Latridiidae, Nitidulidae, Phloeostichidae, Silvanidae, Sphindidae, Pyrochroidae, Anthribidae, Attelabidae and Curculionidae. We conclude that only two beetle families include species with adequately documented cases of external exoskeletal mycangia: (i) Curculionidae (some Scolytinae and Platypodinae); and (ii) the structurally complex mycangia of Attelabidae (Euops females). One or more species of Sphindidae, Erotylidae, Silvanidae, and Latridiidae have likely functional mycangia. Exoskeletal pits with uncertain function are additionally reported from the following families: Cupedidae, Ommatidae, Lepiceridae, Carabidae, Histeridae, Hydraenidae, Leiodidae, Elmidae, Artematopodidae, Throscidae, Elateridae, Rhinorhipidae, Biphyllidae, Cerylonidae, Cyclaxyridae, Monotomidae, Mycetophagidae and Zopheridae. We also discuss the transport of fungal spores and conidia by waxy exudates or debris build up on beetle exoskeleton, as well as their passive attachment to the body.