SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Minoshima S, Berger KL, Lee KS, Mintun MA. An automated method for rotational correction and centering of three-dimensional functional brain images. J Nucl Med 1992; 33: 15791585.
  • 2
    Minoshima S, Koeppe RA, Mintun MA et al. Automated detection of the intercommissural line for stereotactic localization of functional brain images. J Nucl Med 1993; 34: 322329.
  • 3
    Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomical standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 1993; 35: 15281537.
  • 4
    Matsuda H, Mizumura S, Soma T, Takemura N. Conversion of brain SPECT images between different collimators and reconstruction processes for analysis using statistical parametric mapping. Nucl Med Commu 2004; 25: 6774.
  • 5
    Kanetaka H, Matsuda H, Asada T et al. Effects of partial volume correction on discrimination between very early Alzheimer’s dementia and controls using brain perfusion SPECT. Eur J Nucl Med Mol Imaging 2004; 31: 975980.
  • 6
    Matsuda H, Mizumura S, Nagao T et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol 2007; 28: 731736.
  • 7
    Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000; 11: 805821.
  • 8
    Hirata Y, Matsuda H, Nemoto K et al. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci Lett 2005; 382: 269274.
  • 9
    Frith CD, Friston KJ, Ashburner J et al. Principles and methods. In: FrackowiakRSJ, FristonKJ, FrithCD, DolanRJ, MazziottaJC, eds. Human Brain Function. New York: Academic Press, 1997; 3159.
  • 10
    Emilinen G, Beyreuther K, Masters CL, Maloteaux JM. Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 2000; 57: 454459.
  • 11
    Zamrini E, De Santi S, Tolar M. Imaging is superior to cognitive testing for early diagnosis of Alzheimer’s disease. Neurobiol Aging 2004; 25: 685691.
  • 12
    Ishii K, Willoch F, Minoshima S et al. Statistical brain mapping of 18F-FDG PET in Alzheimer’s disease: validation of anatomic standardization for atrophied brains. J Nucl Med 2001; 42: 548557.
  • 13
    Petersen RC, Doody R, Kurz A et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58: 19851992.
  • 14
    Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994; 344: 895.
  • 15
    Minoshima S, Giordani B, Berent S et al. Metabolic reduction in the psoterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42: 8594.
  • 16
    Kogure D, Matsuda H, Ohnishi T et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med 2000; 41: 11551162.
  • 17
    Okamura N, Arai H, Maruyama M et al. Combined analysis of CSF Tau levels and [123, I]Iodoamphetamine SPECT in mild cognitive impairment: implications for a novel predictor of Alzheimer’s disease. Am J Psychiatry 2002; 159: 474476.
  • 18
    Ibanez V, Pietrini P, Alexandar GE et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998; 50: 15851593.
  • 19
    Imabayashi E, Matsuda H, Asada T et al. Superiority of 3-dimensional stereotactic surface projection analysis over visual inspection in discrimination of patients with very early Alzheimer’s disease from controls using brain perfusion SPECT. J Nucl Med 2004; 45: 14501457.
  • 20
    Small GW, Mazziotta JC, Collins MT et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995; 273: 942947.
  • 21
    Small GW, Ercoli LM, Silverman DH et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 2000; 97: 60376042.
  • 22
    Mazziota JC, Phelps ME. Principles and applications for the brain and heat. In: PhelpsME, MazziotalJC, SchelbertH, eds. Positron Emission Tomography and Autoradiography. New York: Raven Press, 1986; 493579.
  • 23
    Gomez-Isla T, Price TL, McKeel DW et al. Profound loss of layer II enthorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996; 16: 44914500.
  • 24
    Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 1999; 122: 15191531.
  • 25
    Minoshima S, Cross DJ, Foster NL, Henry TR, Kuhl DE. Discordance between traditional pathologic and energy metabolic changes in very early Alzheimer’s disease. Pathophysiological implications. Ann N Y Acad Sci 1999; 893: 350352.
  • 26
    Mosconi L, Pupi A, De Cristofaro MT, Fayyaz M, Sorbi S, Herholz K. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer’s disease. J Nucl Med 2004; 45: 382392.
  • 27
    Hirao K, Ohnishi T, Matsuda H et al. Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer’s disease using brain perfusion SPECT. Nucl Med Commun 2006; 27: 151156.
  • 28
    Desgranges B, Baron JC, De La Sayette V et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 1998; 121: 611631.
  • 29
    Fletcher PC, Frith CD, Grasby PM, Shallice T, Frackwiak RSJ, Dolan RJ. Brain system for encoding and retrieval of auditory-verbal memory. Brain 1995; 118: 401416.
  • 30
    Rudge P, Warrington EK. Selective impairment of memory and visual perception in splenial tumours. Brain 1991; 114: 349360.
  • 31
    Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT. Retrosplenial amnesia. Brain 1987; 110: 16311646.
  • 32
    Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry 1937; 38: 725743.
  • 33
    Wagner AD, Shannon BJ, Kahn I, Buckner RL. Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 2005; 9: 445453.
  • 34
    Hyman BT, Van Hoesen GW, Kromer C, Damasio AR. Alzheimer’s disease: cell specific pathology isolates the hippocampal formation. Science 1984; 225: 11681170.
  • 35
    Frisoni GB, Testa C, Zorzan A et al. Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychitatry 2002; 73: 657664.
  • 36
    Chetelat G, Desgranges De La Sayette BV, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002; 13: 19391943.
  • 37
    Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 2003; 60: 13741377.
  • 38
    Mosconi L, Perani D, Sorbi S et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 2004; 63: 23322340.
  • 39
    Huang C, Wahlund LO, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol 2002; 2: 9.
  • 40
    Drzezga A, Lautenschlager N, Siebner H et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003; 30: 11041113.
  • 41
    Hirao K, Ohnishi T, Hirata Y et al. The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 2005; 28: 10141021.
  • 42
    Stoub TR, Bulgakova M, Leurgans S et al. MRI predictors of risk of incident Alzheimer disease: a longitudinal study. Neurology 2005; 64: 15201524.
  • 43
    Killiany RJ, Hyman BT, Gomez-Isla T et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002; 58: 11881196.