SEARCH

SEARCH BY CITATION

Keywords:

  • biodiversity loss;
  • economy;
  • income distribution;
  • IUCN Red List;
  • social-ecological systems
  • distribución de ingresos;
  • economía;
  • Lista Roja IUCN;
  • pérdida de biodiversidad;
  • sistemas sociales-ecológicos

Abstract: We used socioeconomic models that included economic inequality to predict biodiversity loss, measured as the proportion of threatened plant and vertebrate species, across 50 countries. Our main goal was to evaluate whether economic inequality, measured as the Gini index of income distribution, improved the explanatory power of our statistical models. We compared four models that included the following: only population density, economic footprint (i.e., the size of the economy relative to the country area), economic footprint and income inequality (Gini index), and an index of environmental governance. We also tested the environmental Kuznets curve hypothesis, but it was not supported by the data. Statistical comparisons of the models revealed that the model including both economic footprint and inequality was the best predictor of threatened species. It significantly outperformed population density alone and the environmental governance model according to the Akaike information criterion. Inequality was a significant predictor of biodiversity loss and significantly improved the fit of our models. These results confirm that socioeconomic inequality is an important factor to consider when predicting rates of anthropogenic biodiversity loss.

Resumen: Utilizamos modelos socioeconómicos que incluyeron la inequidad económica para predecir la pérdida de biodiversidad, medida como la proporción de especies amenazadas de plantas y vertebrados, en 50 países. Nuestra principal meta fue evaluar sí la inequidad económica, medida como el índice Gini de distribución del ingreso, mejoraba el poder predictivo de nuestros modelos estadísticos. Comparamos cuatro modelos que incluyeron lo siguiente: solo densidad poblacional, huella económica (i.e., el tamaño de la economía en relación con la superficie del país); huella económica e inequidad de ingresos (índice Gini) y un índice de gobernabilidad ambiental. También probamos la hipótesis de la curva ambiental de Kuznets, pero no fue sustentada por los datos. Las comparaciones estadísticas de los modelos revelaron que el modelo que incluyó la huella ecológica y la inequidad fue el mejor pronosticador de especies amenazadas. Superó significativamente el funcionamiento de la densidad poblacional sola y la gobernabilidad ambiental de acuerdo con el criterio de información de Akaike. La inequidad fue un pronosticador significativo de la pérdida de biodiversidad y mejoró significativamente el ajuste de nuestros modelos. Los resultados confirman que la inequidad socioeconómica es un factor importante a considerar cuando se pronostican tasas de pérdida antropogénica de biodiversidad.