SEARCH

SEARCH BY CITATION

References

  • 1
    Rossi PH, Freeman HE. Evaluation: A Systematic Approach (5th ed.). Newburgy Park, CA: Sage Publications, Inc., 1993.
  • 2
    Ozminkowski RJ, Brach LG. On the Economic Analysis of Interventions of Aged Populations in “Public Health and Aging.” Baltimore, MD: John Hopkins University Press, 1998.
  • 3
    Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70:4155.
  • 4
    Rosenbaum PR. Observational Studies. Series in Statistics. New York: Springer, 2002.
  • 5
    Pencavel J. Labor supply of men. In: AshenfelterO, LayardR, eds. Handbook of Labor Economics. San Diego: Elsevier, 1986.
  • 6
    Ashenfelter O, Card D. Using the longitudinal structure of earnings to estimate the effect of training programs. Rev Econ Statis 1985;67:64860.
  • 7
    Newhouse JP, McCellan M. Econometrics in outcomes research: the use of Instrumental Variables. Annu Rev Public Health 1998;19:1734.
  • 8
    Hausman JA, Wise DA. Attrition bias in experimental and panel data: the gary income maintenance requirement. Econometrica 1979;47:45573.
  • 9
    Smith H. Matching with multiple controls to estimate treatment effects in observational studies. Socio Method 1997;27:32553.
  • 10
    Heckman JR, Lalonde R, Smith J. The economics and econometrics of active labor market programs, propensity score matching methods for non-experimental causal studies. In: AshenfelterO, LayardR, eds. Handbook of Labor Economics. Amsterdam: Elsevier, 1999.
  • 11
    Michael T, King G, Zeng L. Relogit: rare events logistic regression. J Statist Software 2003;8:2467.
  • 12
    Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001;54:97985.
  • 13
    Feinstein A. Multivariable Analysis: an Introduction. New Haven, CT: Yale University Press, 1996.
  • 14
    Hosmer DL, Lemeshow S. Applied Logistic Regression (2nd ed.). New York: John Wiley and Sons, 2000.
  • 15
    Smith J, Todd P. Does matching overcome Lalonde’s Critique of non-experimental estimators? J Econ 2005;125:30553.
  • 16
    Sianesi B. Evaluation of the active labour market programs in Sweden. Rev Econ Stat 2004;86:13355.
  • 17
    Rubin DB, Thomas N. Combining propensity score matching with additional adjustments for prognostic covariates. J Am Stat Assoc 2000;95:57385.
  • 18
    Heckman JH, Ichimura H, Todd P. Matching as an econometric evaluation estimator: evidence from evaluating a job training program. Rev Econ Stud 1998;64:60554.
  • 19
    Heckman J, Ichimura H, Smith J, Todd P. Characterizing selection bias using experimental data. Econometrica 1998;66:101798.
  • 20
    Heckman J, Smith J. The pre-program earnings dip and the determinants of participation in a social program: implications for simple program evaluation strategies. The working paper No. 6983. National Bureau of Economic Research, 1999.
  • 21
    Lemeshow S, Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 2002;115:92106.
  • 22
    Ruttimann UE. Statistical approaches to development and validation of predictive instruments. Crit Care Clin 1994;10:1935.
  • 23
    Bryson A, Dorsett R, Purdon S. The use of propensity score matching in the evaluation of labour market policies. Working Paper, 4. Department for Work and Pensions, 2002.
  • 24
    Sherry W, Lapane KL, Toledano AY, et al. Principles of modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf 2004;13:84153.
  • 25
    Dehejia R, Wahba S. Causal effects in non-experimental studies: re-evaluation of the evaluation of training programs. J Am Stat Assoc 1999;94:104362.
  • 26
    LaLonde RJ. Evaluating the econometric evaluations of training programs. Am Econ Rev 1986;76:60420.
  • 27
    Dehejia RH, Wahba S. Propensity score matching methods for nonexperimental causal studies. Rev Econ Stat 2002;84:1511.
  • 28
    D’Agostino RB, Jr. Tutorial in biostatistics: propensity score methods for bias reduction in comparison of a treatment to a non-randomized control group. Stat Med 1998;17:226581.
  • 29
    Leuven E, Sianesi B. PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. Version 1.2.3. Available from: http://ideas.repec.org/c/boc/bocode/s432001.html[Accessed April 4, 2005].
  • 30
    Parsons LS. Reducing Bias in a Propensity Score Matched Pair Sample Using Greedy [37] Matching Techniques. Available from: http://www2.sas.com/proceedings/sugi26/p214-26.pdf[Accessed March 2, 2005].
  • 31
    Conover WJ. Practical Nonparametric Statistics. New York: John Wiley & Sons, 1999.
  • 32
    Crown WH, Berndt ER, Baser O, et al. Benefit plan design and prescription drug utilization among asthmatics. Do patient copayments matter? Front Health Pol Res 2004;7:95127.
  • 33
    Manning WG, Mullahy H. Estimating log models: to transform or not to transform? J Health Econ 2001;20:46194.
  • 34
    Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics 1993;49:12316.
  • 35
    Rubin D. Estimating causal effects from large data sets using propensity scores. In: Annals of Internal Medicine. New York: Heidelberg, 1997.