• Adrondack Lowlands;
  • contact metamorphism;
  • fluid flow;
  • stable isotopes;
  • wollastonite


The Valentine wollastonite skarn in the north-west Adirondack Mountains, New York, is a seven million ton deposit which resulted from channellized infiltration of H2O-rich, silica-bearing fluids. The wollastonite formed by reaction of these fluids with non-siliceous calcite marble. The skarn formed at the contact of the syenitic Diana Complex and was subsequently overprinted by Grenville-age granulite facies metamorphism and retrograde hydrothermal alteration during uplift. Calcite marbles adjacent to the deposit have generally high δ18O values (c. 21‰), typical of Grenville marbles which have not exchanged extensively with externally derived fluids. Carbon isotopic fractiona-tions between coexisting calcite and graphite in the marbles indicate equilibration at 675d̀ C, consistent with the conditions of regional metamorphism. Oxygen isotopic ratios from wollastonite skarn are lower than in the marbles and show a 14‰ variation (-1‰ to 13‰). Some isotopic heterogeneity is preserved from skarn formation, and some represents localized exchange with low-δ18O retrograde fluids. Detailed millimetre- to centimetre-scale isotopic profiles taken across skarn/marble contacts reveal steep δ18O gradients in the skarn, with values increasing towards the marble. The gradients reflect isotopic evolution of the fluid as it reacted with high δ18O calcite to form wollastonite. Calcite in the marble preserves high δ18O values to within <5 mm of the skarn contact. The preservation of high δ18O values in marbles at skarn contacts and the disequilibrium fractionation between wollastonite skarn and calcite marble across these contacts indicate that the marbles were not infiltrated with significant quantities of the fluid. Thus, the marbles were relatively impermeable during both the skarn formation and retrograde alteration. Skarn formation may have been episodic and fluid flow was either chaotic or dominantly parallel to lithological contacts. Although these steep isotope gradients resemble fluid infiltration fronts, they actually represent the sides of the major flow system. Because chromatographic infiltration models of mass transport require the assumption of pervasive fluid flow through a permeable rock, such models are not applicable to this hydrothermal system and, by extension, to many other metamorphic systems where low-permeability rocks restrict fluid migration pathways. Minimum time-integrated fluid fluxes have been calculated at the Valentine deposit using oxygen isotopic mass balance, reaction progress of fluid buffering reactions, and silica mass balance. All three approaches show that large volumes of fluid were necessary to produce the skarn, but silica mass balance calculations yield the largest minimum flux and are hence the most realistic.