SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Schneeweiss S, Maclure M. Use of comorbidity scores for control of confounding in studies using administrative databases. Int J Epidemiol. 2000;29: 8918.
  • 2
    Greenfield S, Nelson EC. Recent developments and future issues in the use of health status assessment measures in clinical setting. Med Care. 1992;30: MS23MS41.
  • 3
    Iezzoni LI. Risk Adjustment for Measuring Healthcare Outcomes. 2nd ed. Chicago, Ill: Health Administration Press; 1997.
  • 4
    Roos LL, Sharp SM, Cohen MM, Wajda A. Risk adjustment in claims-based research: the search for efficient approaches. J Clin Epidemiol. 1989;42: 11931206.
  • 5
    Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol. 1993;46: 10759.
  • 6
    Romano PS, Roos LL, Jollis JG. Further evidence concerning the use of a clinical comorbidity index with ICD-9-CM administrative data. J Clin Epidemiol. 1993;46: 108590.
  • 7
    Von Korff M, Wagner EH, Saunders K. A chronic disease score from automated pharmacy data. J Clin Epidemiol. 1992;45: 197203.
  • 8
    Clark DO, Von Korff M, Saunders K, Baluch WM, Simon GE. A chronic disease score with empirically derived weights. Med Care. 1995;33: 78395.
  • 9
    Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45: 6139.
  • 10
    D’Hoore W, Sicotte C, Tilquin C. Risk adjustment in outcome assessment: the Charlson Comorbidity Index. Methods Inf Med. 1993;32: 3827.
  • 11
    D’Hoore W, Bouckaert A, Tilquin C. Practical considerations on the use of the Charlson index with administrative data bases. J Clin Epidemiol. 1996;49: 142933.
  • 12
    Ghali WA, Hall RE, Rosen AK, Ash AS, Moskowitz MA. Searching for an improved clinical comorbidity index for use with ICD-9-CM administrative data. J Clin Epidemiol. 1996;49: 2738.
  • 13
    Melfi C, Holleman E, Arthur D, Katz B. Selecting a patient characteristics index for the prediction of medical outcomes using administrative claims data. J Clin Epidemiol. 1995;48: 91726.
  • 14
    Poses RM, Smith WR, McClish DK, Anthony M. Controlling for confounding by indication for treatment. Are administrative data equivalent to clinical data? Med Care. 1995;33: AS36AS46.
  • 15
    Schneeweiss S, Walker AM, Glynn RJ, Maclure M, Dormuth C, Soumerai SB. Outcomes of reference drug pricing for angiotensin-converting enzyme inhibitors. N Engl J Med. 2002;346: 8229.
  • 16
    Schneeweiss S, Seeger J, Maclure M, Wang P, Avorn J, Glynn RJ. Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data. Am J Epidemiol. 2001;154: 85464.
  • 17
    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40: 37383.
  • 18
    Elixhauser A, Steiner C, Harris R, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36: 827.
  • 19
    Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv Res. 2003;38: 110320.
  • 20
    Zhang JX, Iwashyna TJ, Christakis NA. The performance of different lookback periods and sources of information for Charlson comorbidity adjustment in Medicare claims. Med Care. 1999;37: 112839.
  • 21
    American Society of Health-System Pharmacists: AHFS Drug Information 96. Bethesda, Md; 1996.
  • 22
    Wang PS, Walker A, Tsuang M, Orav EJ, Levin R, Avorn J. Strategies for improving comorbidity measures based on Medicare and Medicaid claims data. J Clin Epidemiol. 2000;53: 5718.
  • 23
    Yuan Z, Cooper GS, Einstadter D, Cebul RD, Rimm AA. The association between hospital type and mortality and length of stay. Med Care. 2000;38: 23145.
  • 24
    Lessler JT, Harris BSH. Medicaid data as a source for postmarketing surveillance information, final report. Research Triangle Park, NC: Research Triangle Institute; 1984.
  • 25
    Iezzoni LI, Foley SM, Daley J, Hughes J, Fisher ES, Heeren T. Comorbidities, complications, and coding bias: does the number of diagnosis codes matter in predicting in-hospital mortality? JAMA. 1992;267: 2197203.
  • 26
    Fisher ES, Whaley FS, Krushat M, et al. The accuracy of Medicare's hospital claims data: progress has been made, but problems remain. Am J Public Health. 1992;82: 2438.
  • 27
    Anderson GM, Kerluke KJ, Pulcins IR, Hertzman C, Barer ML. Trends and determinants of prescription drug expenditures in the elderly: data from the British Columbia Pharmacare Program. Inquiry. 1993;30: 199207.
  • 28
    Roos LL, Sharp SM, Cohen MM. Comparing clinical information with claims data: some similarities and differences. J Clin Epidemiol. 1991;44: 8818.
  • 29
    Williams JI, Young W. Inventory of studies on the accuracy of Canadian health administrative databases. Technical Report, Institute for Clinical Evaluative Sciences (ICES); December 1996.
  • 30
    Fowles JB, Lawthers AG, Weiner JP, et al. Agreement between physician's office records and Medicare part B claims data. Health Care Financ Rev. 1995;16: 18999.
  • 31
    Romano PS, Mark DH. Bias in the coding of hospital discharge data and its implications for quality assessment. Med Care. 1994;32: 8190.
  • 32
    Glynn RJ, Monane M, Gurwitz JH, Choodnovskiy I, Avorn J. Agreement between drug treatment and a discharge diagnosis of diabetes. Am J Epidemiol. 1999;149: 5419.
  • 33
    Ash AS, Shwartz M. Evaluating the performance of risk-adjustment methods: dichotomous outcomes. In: IezzoniLI, ed. Risk Adjustment for Measuring Healthcare Outcomes. 2nd ed. Chicago, Ill: Health Administration Press; 1997.
  • 34
    Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97: 183747.
  • 35
    Hosmer DW, Lemeshow S. Applied Logistic Regression, 2nd ed. New York, NY: Wiley; 2000.
  • 36
    Liebetrau AM. Measures of Association. Quantitative Application in the Social Sciences. Vol. 32. Beverly Hills, Calif: Sage Publications; 1983.
  • 37
    Maclure M, Schneeweiss S. Causation of bias: the episcope. Epidemiology. 2001;12: 11422.
  • 38
    Redelmeier DA, Tan SH, Booth GL. The treatment of unrelated disorders in patients with chronic medical diseases. N Engl J Med. 1998;338: 151620.
  • 39
    Glynn RJ, Monane M, Gurwitz JH, Choodnovskiy I, Avorn J. Aging, comorbidity, and reduced rates of drug treatment for diabetes mellitus. J Clin Epidemiol. 1999;52: 78190.
  • 40
    Glynn RJ, Knight EL, Levon R, Avorn J. Paradoxical relations of drug treatment with mortality in older persons. Epidemiology. 2001;12: 6829.
  • 41
    Moons KGM, Stijnen T, Michel BC, et al. Application of treatment thresholds to diagnostic test evaluation: an alternative to the comparison of areas under receiver operating characteristics curves. Med Decis Making. 1997;17: 44754.
  • 42
    Hannan EL, Kilburn H, Lindsey ML, Lewis R. Clinical versus administrative data bases for CABG surgery. Does it matter? Med Care. 1992;30: 892907.
  • 43
    Grover S, Coupal L, Hu X-P. Identifying adults at increased risk of coronary disease: how well do the current cholesterol guidelines work? JAMA. 1995;274: 8016.
  • 44
    Wilson PWF, D’Agostino RB Sr., Levy L, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97: 183747.