SEARCH

SEARCH BY CITATION

Abstract

We studied the effects of soil handling operations during bauxite mining and restoration on the numbers and depth distribution of seed stored in the surface soil of the jarrah forest. Germinable seed stores were determined in four sites of undisturbed forest, these same sites after clearing and burning of forest residues, in the soil immediately following the construction of topsoil stockpiles, in the respread topsoil and then after deep ripping of the respread topsoil. Average density of germinable seed at four sites prior to disturbance was 352 m−2. After clearing and burning, the seed store had decreased to a mean 74% of the original forest soil seed store density. When the top-soil was stockpiled prior to respreading, the seed content was further reduced to 31% in freshly constructed stockpiles and had declined to 13% after 10 months in the stockpiles. After ripping of the respread topsoil the seed content was 16% of the original forest seed store density. In one site where the topsoil was directly stripped and respread with no period of stockpiling but with a period of fallow, the seed store was 32% after respreading and then increased to 53% of the original forest store after ripping. This increase may have been caused by an underestimate of the reserves due to insufficient heating of the samples to break dormancy in fire-requiring species. In the forest topsoils seed was concentrated in the upper few centimeters of the soil profile, whereas after the mining and restoration operations seed was evenly distributed throughout the returned soil profile to a depth of 20 cm. Small-seeded annual species, which were common in the forest seed store, were more sensitive to the soil handing operations and declined to very low numbers, whereas hard-seeded plant species such as Acacia spp. were less affected by the soil handling operations. Implications for bauxite mine revegetation operations include the recommendation that direct return of topsoil should be carried out wherever possible with a minimum delay between clearing, stripping, respreading, and ripping.