Restoration of Arthropod Assemblages in a Spartina Salt Marsh following Removal of the Invasive Plant Phragmites australis


Address correspondence to C. Gratton, email


Invasive plants are one of the most serious threats to native species assemblages and have been responsible for the degradation of natural habitats worldwide. As a result, removal of invasive species and reestablishment of natural vegetation have been attempted in order to restore biodiversity and ecosystem function. This study examined how native arthropod assemblages, an abundant and functionally important group of organisms in many ecosystems, are affected by the incursion of the invasive wetland plant Phragmites australis and if the restoration of the native vegetation in brackish Spartina alterniflora marshes results in the reestablishment of the arthropod community. The invasion of Phragmites into a coastal Spartina marsh in southern New Jersey seriously altered arthropod assemblages and trophic structure by changing the abundance of trophic groups (detritivores, herbivores, carnivores) and their taxonomic composition. Herbivore assemblages shifted from the dominance of external free-living specialists (e.g., planthoppers) in Spartina to concealed feeders in Phragmites (stem-feeding cecidomyiids). Moreover, free-living arthropods in Phragmites became dominated by detritivores such as Collembola and chironomids. The dominant marsh spiders, web-building linyphiids, were significantly reduced in Phragmites habitats, likely caused by differences in the physical environment of the invaded habitats (e.g., lower stem densities). Thus, trophic structure of arthropod assemblages in Phragmites, as seen in the large shifts in feeding guilds, was significantly different from that in Spartina. Removal of Phragmites with the herbicide glyphosate resulted in the rapid return of Spartina (≤5 yrs). Moreover, return of the dominant vegetation was accompanied by the recovery of most original habitat characteristics (e.g., live and dead plant biomass, water flow rate). The arthropod assemblage associated with Spartina also quickly returned to its preinvasion state and was not distinguishable from that in uninvaded Spartina reference sites. This study provides evidence that the reestablishment of native vegetation in areas previously altered by an invasive plant can result in the rapid recovery of the native arthropod assemblage associated with the restored habitat.