• disturbance;
  • fallow agriculture;
  • microbial biomass;
  • nitrogen;
  • páramo;
  • pH;
  • soil organic matter;
  • spatial heterogeneity


The aim of this study was to analyze indicators of soil restoration during secondary succession in a heterogeneous valley in the high tropical Andes. A combination of chronosequence and permanent plot methods was used to detect changes in this heterogeneous matrix. Thirty-six plots with different fallow times (1–9 years) and four noncultivated plots with natural vegetation (páramo) were sampled twice in a 3-year interval (1996 and 1999). The following soil properties were determined: total C and N, pH, exchangeable bases, cation exchange capacity, and microbial biomass N (MB-N). Using the chronosequence approach, successional increases in soil pH and Mg were detected, pointing to these variables as indicators of soil restoration during the fallow period. Comparing the noncultivated páramo with the fallow plots, a significant decrease in MB-N was found, suggesting that this is a sensitive agricultural disturbance indicator. The permanent plot analysis failed to detect successional trends in any of the study variables, probably as a result of a lack of sensitivity of the indicators used within the 3-year interval. Nevertheless, a strong acidification was detected by the permanent plot method when fallow plots were cultivated. We conclude that the size of important soil components such as total soil organic matter or microbial biomass is not a sensitive soil restoration indicator in these heterogeneous mountain systems but that other integrative variables such as pH could be more sensitive to successional changes in key soil processes (e.g., nitrification or nutrient losses).