SEARCH

SEARCH BY CITATION

Keywords:

  • back reef;
  • culvert;
  • estuary;
  • fragmentation;
  • nursery;
  • underwater visual census

Disruption of hydrologic connectivity via road crossings is extremely common in Bahamian tidal creeks, resulting in increased sedimentation and decreased habitat quality and quantity for biota. We restored hydrologic connectivity (i.e., tidal flow) in two small Bahamian mangrove tidal creeks in May 2004 and 2005. We observed the characteristics of fish assemblage structure (species richness) and function (secondary production and transient species utilization of restored areas) before and after restoration, and compared these data with fragmented and unfragmented reference creeks. Restoration significantly increased species richness and secondary production of resident fish species in one of the two restored creeks. Increased utilization of the previously blocked wetlands by transient fishes was observed in both creeks. We suggest success could be attributed to the presence of adjacent nearshore recruitment sources, a more complex local seascape (i.e., high habitat heterogeneity in the creek and local nearshore), and the creation of deep upstream refugia pools. This is one of the first studies to use both structural and functional characteristics to monitor the success of restoration in mangrove ecosystems. Studies combining both structural and functional metrics in restoration monitoring are imperative in linking restoration ecology theory with practical ecological restoration efforts.