SEARCH

SEARCH BY CITATION

Keywords:

  • fire prescriptions;
  • fire regime;
  • life form;
  • plant reproduction;
  • resilience;
  • vital attributes

Wildfires change plant communities by reducing dominance of some species while enhancing the abundance of others. Detailed habitat-specific models have been developed to predict plant responses to fire, but these models generally ignore the breadth of fire regime characteristics that can influence plant survival such as the degree and duration of exposure to lethal temperatures. We provide a decision framework that integrates fire regime components, plant growth form, and survival attributes to predict how plants will respond to fires and how fires can be prescribed to enhance the likelihood of obtaining desired plant responses. Fires are driven by biotic and abiotic factors that dictate their temporal (seasonality and frequency), spatial (size and patchiness), and magnitude (intensity, severity, and type) components. Plant resistance and resilience to fire can be categorized by a combination of life form, size, and ability to disperse or protect seeds. We use a combination of life form and vital plant attributes along with an understanding of fire regime components to suggest a straightforward way to approach the use of fire to either reduce or enhance particular species. A framework for aiding decisions is organized by life form and plant size. Questions regarding perennating bud and seed characteristics direct restoration practitioners to fire regimes that may achieve their management objectives of either increasing or decreasing plants with specific life form characteristics.