SEARCH

SEARCH BY CITATION

Keywords:

  • Elymus glaucus;
  • functional similarity;
  • grassland;
  • invasive plant;
  • light availability;
  • native perennial grasses;
  • soil moisture

To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non-native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine the effect of soil moisture and light availability on plant community invasion resistance. The annual plant communities were unable to resist invasion by C. solstitialis. In the native winter annual forb community, senescence in late spring increased light penetration (>75%) to the soil surface, allowing seeded C. solstitialis to quickly establish and dominate the plots. In addition, native annual forbs utilized only shallow soil moisture, whereas C. solstitialis used shallow and deep soil moisture. In communities containing native perennials, only Elymus glaucus established well and eventually dominated the plots. During the first 2 years of establishment, water use pattern of perennial communities was similar to native annual forbs and resistance to invasion was associated with reduced light availability during the critical stages of C. solstitialis establishment. In later years, however, water use pattern of perennial grass communities was similar or greater than C. solstitialis-dominated plots. These results show that Central Valley grasslands that include E. glaucus resist C. solstitialis invasion by a combination of light suppression and soil water competition. Spatiotemporal resource utilization patterns, and not just functional similarity, should be considered when developing restoration strategies to resist invasion by many non-native species.