SEARCH

SEARCH BY CITATION

Keywords:

  • broadleaf marsh;
  • depth;
  • hydroperiod;
  • Kissimmee River;
  • Ludwigia peruviana

The ongoing restoration of the channelized Kissimmee River is expected to promote reestablishment of the prolonged, deep inundation regimes that sustained broadleaf marsh as the dominant wetland plant community on the historical floodplain. The success of the restoration was evaluated at locations on the remnant floodplain where broadleaf marsh had been replaced by a mesophytic shrub community, and on the lower portion of the reconstructed floodplain, which was recreated by backfilling of a flood control canal and degradation of associated spoil mounds. During the 8-year post-restoration period (2001–2008) mean annual hydroperiods and depths on the restored floodplain were not significantly different from pre-channelization hydrologic conditions at historical reference sites. Increased hydroperiods and depths eliminated the mesophytic shrub (primarily Myrica cerifera) and associated fern cover, and led to colonization of floating and mat-forming species, but did not result in the reestablishment of a broadleaf marsh community. Signature broadleaf marsh species, Sagittaria lancifolia and Pontederia cordata, were found in all remnant floodplain plots and colonized 8 of the 10 reconstructed floodplain plots, but had mean cover ranging from only 0.9 to 6.1%. Several factors may have contributed to unsuccessful reestablishment of broadleaf marsh, including unfavorable edaphic conditions, brief drawdown (low stage) periods for establishment of seedlings, flood induced mortality, and an invasion of the exotic shrub, Ludwigia peruviana, which had post-restoration mean cover of 17–19%. Study results indicate hydrologic restoration of floodplain plant communities can be influenced by more discrete aspects of the river flood pulse than average hydroperiods and depths.