Rapid Shift in Pollinator Communities Following Invasive Species Removal


A. K. Fiedler, email fiedlerak@gmail.com


Ecological restoration is increasingly used to reverse degradation of rare ecosystems and maintain biological diversity. Pollinator communities are critical to maintenance of plant diversity and, in light of recent pollinator loss, we tested whether removal of invasive glossy buckthorn (Frangula alnus L.) from portions of a prairie fen wetland altered plant and pollinator communities. We compared herbaceous plant, bee, and butterfly abundance, diversity, and species composition in buckthorn invaded, buckthorn removal, and uninvaded reference plots. Following restoration, we found striking differences in plant and pollinator abundance and species composition between restored, unrestored, and reference plots. Within 2 years of F. alnus removal, plant species diversity and composition in restored plots were significantly different than invaded plots, but also remained significantly lower than reference plots. In contrast, in the first growing season following restoration, bee and butterfly abundance, diversity, and composition were similar in restored and reference plots and distinct from invaded plots. Our findings indicate that a diverse community of mobile generalist pollinators rapidly re-colonizes restored areas of prairie fen, while the plant community may take longer to fully recover. This work implies that, in areas with intact pollinator metapopulations, restoration efforts will likely prevent further loss of mobile generalist pollinators and maintain pollination services. On the other hand, targeted restoration efforts will likely be required to restore populations of rare plants and specialist pollinators for which local and regional species pools may be lacking.