• 1
    Hauser WA, Hersdorffer DC. Epilepsy: frequency, causes and consequences New York Demos, 1990.
  • 2
    Schwartzkroin PA, Moshé SL, Noebels JL, Swann JW. Brain development and epilepsy New York Oxford University Press, 1995.
  • 3
    Chronister RB, White LE Jr. Fiberarchitecture of the hippocampal formation: anatomy, projections, and structural significance. In: IsaacsonRL, PribramKH, eds. The hippocampus, vol. 1. New York : Plenum Press, 1975:945.
  • 4
    Witter MP. Connectivity of the rat hippocampus. In: Chan-PalayV, KöhlerC, eds. Neurology and neurobiology. Volume 52. The hippocampus-new vistas New York Alan R. Liss, 1989:5369.
  • 5
    Gulyàs AI, Hàjos N, Freund TF. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 1996;16:3397411.
  • 6
    Ottersen OP, Storm-Mathisen J. Excitatory and inhibitory amino acids in the hippocampus. In: Chan-PalayV, KöhlerC, eds. Neurology and neurobiology. Volume 52. The hippocampus-new vistas New York Alan R. Liss, 1989:97117.
  • 7
    Nadler JV, White WF, Vaca KW, Lynch GS, Cotman CW. Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 1976;260:53840.
  • 8
    Nadler JV, White WF, Vaca KW, Perry BW, Cotman CW. Biochemical correlates of transmission mediated by glutamate and aspartate. J Neurochem 1978;31:14755.
  • 9
    Sloviter RS, Nilaver G. Immunocytochemical localization of GABA-, cholecytokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol 1987;256:4260.
  • 10
    Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965;124:31936.
  • 11
    Bayer SA. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 1980;190:87114.
  • 12
    Amaral DG, Dent JA. Development of the mossy fibers of the dentate gyms: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 1981;195:5186.
  • 13
    Ribak CE, Navetta MS. An immature mossy fiber innervation of hilar neurons may explain their resistance to kainate-induced cell death in 15-day-old rats. Dev Brain Res 1994;79:4752.
  • 14
    Muller D, Oliver M, Lynch G. Developmental changes in synap-tic properties in hippocampus of neonatal rats. Dev Brain Res 1989;49:10514.
  • 15
    Stringer JL, Lothman EW. Ontogeny of hippocampal afterdis-charges in the urethane-anesthetized rat. Dev Brain Res 1992;70: 2239.
  • 16
    Walsh CA. Neuronal identity, neuronal migration, and epileptic disorders of the cerebral cortex. In: SchwartzkroinPA, MoshéSL, NoebelsJL, SwamJW, eds. Brain development and epilepsy New York : Oxford University Press, 1995:12243.
  • 17
    Allendoerfer KL, Schatz CJ. The subplate, a transient neocortical structure: its role in development of connections between thalamus and cortex. Annu Rev Neurosci 1994;17:185218.
  • 18
    McDonald JW, Johnston MV. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 1990;15:4170.
  • 19
    McDonald JW, Silverstein FS, Cardona D, Hudson C, Chen R, Johnston MV. Systemic administration of MK-801 protects against N-methyl-D-aspartate- and quisqualate-mediated neurotoxicity in perinatal rats. Neuroscience 1990;36:58999.
  • 20
    Schoepfer R, Monyer H, Sommer B, et al. Molecular biology of glutamate receptors. Prog Neurobiol 1994;42:3537.
  • 21
    Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxic01 1989;29:365402.
  • 22
    Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. A family of metabotropic glutamate receptors. Neuron 1992;8:16979.
  • 23
    Sugiyama H, Ito I, Watanabe M. Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA. Neuron 1989;3:12932.
  • 24
    Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on sub-unit composition. Science 1991;252:8513.
  • 25
    Verdoom TA, Bumashev N, Monyer H, Seeburg PH, Sakmann B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 1991;252:17158.
  • 26
    Lipton SA. Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci 1993;16:52732.
  • 27
    Lipton SA, Singel DJ, Stamler JS. Nitric oxide in the central nervous system. Prog Brain Res 1994;103:35964.
  • 28
    Sugiyama H, Ito I, Hirono C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 1987;325: 5313.
  • 29
    Schoepp DD, Bockaert J, Sladeczek F. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 1990;11:50815.
  • 30
    Nakanishi S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 1994;13:10337.
  • 31
    Crépel V, Aniksztejn L, Ben-Ari Y, Hammond C. Glutamate metabotropic receptors increase a Ca2+-activated nonspecific cat-ionic current in CA1 hippocampal neurons. J Neurophysiol 1994;72:15619.
  • 32
    Batchelor AM, Madge DJ, Garthwaite J. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 1994;63:9115.
  • 33
    Glaum SR, Miller RJ. Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J Neurosci 1992;12:22518.
  • 34
    Bode-Greuel KM, Singer W. The development of N-methyl-D-aspartate receptors in cat visual cortex. Dev Brain Res 1989;46:197204.
  • 35
    Kleinschmidt A, Bear MF, Singer W. Blockade of “NMDA” receptors disrupts experience-department plasticity of kitten striate cortex. Science 1987;238:3558.
  • 36
    Cherubini E, Gaiarsa JL, Ben-An Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 1991;14:5159.
  • 37
    Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 1996;381:715.
  • 38
    Pokorny J, Yamamato T. Postnatal ontogenesis of the hippocampal CA1 area in rats. II. Development of ultrastructure in stratum lacunosum and moleculare. Brain Res Bull 1981;7:12130.
  • 39
    Richter K, Wolf G. High-affinity glutamate uptake of rat hippocampus during postnatal development: a quantitative autoradiographic study. Neuroscience 1990;34:4955.
  • 40
    Miller LP, Johnson AE, Gelhard RE, Insel TR. The ontogeny of excitatory amino acid receptors in the rat forebrain—II. Kainic acid receptors. Neuroscience 1990;35:4551.
  • 41
    Insel TR, Miller LP, Gelhard RE. The ontogeny of excitatory amino acid receptors in rat forebrain. I. N-Methyl-D-aspartate and quisqualate receptors. Neuroscience 1990;35:3143.
  • 42
    Tremblay E, Roisin MP, Represa A, Charriaut-Marlangue C, Ben-Ari Y. Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res 1988;461:3936.
  • 43
    Ben-Ari Y, Cherubini E, Kmjevic K. Changes in voltage dependence of NMDA currents during development. Neurosci Lett 1988;94:8892.
  • 44
    Morrisett RA, Mott DD, Lewis DV, Wilson WA. Swartzwelder HS. Reduced sensitivity of the N-methyl-D-aspartate component of synaptic transmission to magnesium in hippocampal slices from immature rats. Dev Brain Res 1990;56:25762.
  • 45
    Carmignoto G, Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 1992;258:100711.
  • 46
    Bowe MA, Nadler JV. Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells. Dev Brain Res 1990;56:5561.
  • 47
    Bashir ZI, Bortolotto ZA, Davies CH, et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 1993;363:34750.
  • 48
    Bortolotto ZA, Bashir ZI, Davies CM, Collingridge GL. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 1994;368:7403.
  • 49
    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;362:319.
  • 50
    Pollard H, Khrestchatisky M, Moreau J, Ben-Ari Y. Transient expression of the NR2C subunit of the NMDA receptor in developing rat brain. NeuroReport 1993;4:4114.
  • 51
    Monyer H, Burnashev N, Laurie DJ, Sakman B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994;12:5260.
  • 52
    Hestrin S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 1992;357:6869.
  • 53
    Burgard EC, Hablitz JJ. Developmental change in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. J Neurophysiol 1993;69:2309.
  • 54
    Newbeny NR, Nicoll RA. Comparison of the action of baclofen with γ-Aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol 1985;350:16185.
  • 55
    Sivilotti L, Nistri A. GABA receptor mechanism in the central nervous system. Prog Neurobiol 1991;36:3592.
  • 56
    Alger BE, Nicoll RA. Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 1982;328:12541.
  • 57
    Alger BE, Nicoll RA. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 1982;328:10523.
  • 58
    Anrade R, Malenka RC, Nicoll RA. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 1986;234:12615.
  • 59
    Dutar P, Nicoll RA. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1988;1:58591.
  • 60
    Bowery NG, Hill DR, Hudson AL, et al. (—)Badofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 1980;283:924.
  • 61
    Howe JF, Sutor B, Zieglgänsberger W. Baclofen reduces postsynaptic potentials of rat cortical neurons by an action other than its hyperpolarizing action. J Physiol 1987;384:53969.
  • 62
    Lubbers K, Wolff JR, Frotscher M. Neurogenesis of GABAergic neurons in the rat dentate gyms: a combined autoradiographic and immunocytochemical study. Neurosci Lett 1985;62:31722.
  • 63
    Amaral DG, Kurz J. The time of origin of cells demonstrating glutamic acid decarboxylase-like immunoreactivity in the hippocampal formation of the rat. Neurosci Lett 1985;59:339.
  • 64
    Seress L, Frotscher M, Riback EC. Local circuit neurons in both the dentate gyrus and Ammon's horn establish synaptic connections with the principal neurons in five day old rats: a morphological basis for inhibition in early development. Exp Brain Res 1989;78:19.
  • 65
    Ben-Ari Y, Rovira C, Gaiarsa JL, Coradetti R, Robain O, Cherubini E. GABAergic mechanisms in the CA3 hippocampal region during early postnatal life. Prog Brain Res 1990;83:31321.
  • 66
    Ben-An Y, Tseeb V, Ragozzino D, Khazipov R, Gaiarsa JL. γ-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurons in early postnatal life. Prog Brain Res 1994;102:26173.
  • 67
    Rozenberg F, Robain O, Jardin L, Ben-An Y. Distribution of GABAergic neurons in late and early postnatal rat hippocampus. Dev Brain Res 1989;50:17787.
  • 68
    Coyle JT, Enna SJ. Neurochemical aspects of the ontogenesis of GABAergic neurons in the rat brain. Brain Res 1976;111:11933.
  • 69
    Swann JW, Brady RJ, Martin DL. Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuroscience 1989;28:55161.
  • 70
    Redburn DA, Broome D, Ferkany J, Enna SJ. Development of rat brain uptake and calcium-dependent release of GABA. Brain Res 1978;152:5119.
  • 71
    Moshé SL, Shinnar S, Swann JW. Partial (focal) seizures in developing brain. In: SchwartzkroinPA, MoshéSL, NoebelsSL, SwannJW, eds. Brain development and epilepsy New York : Oxford University Press, 1995:3465.
  • 72
    Gaiarsa JI, McLean H, Congar P, et al. Postnatal maturation of GABA-A and GABA-B mediated inhibition in the CA3 hippocampal region of the rat. J Neurophysiol 1995;26:33949.
  • 73
    Gaiarsa JI, Tseeb V, Ben-Ari Y. Postnatal development of pre and postsynaptic GABAB-mediated inhibitions in the rat CA3 hippocampal region of the rat. J Neurophysiol 1994;73:24655.
  • 74
    Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 1989;416:30325.
  • 75
    Killisch I, Dotti CG, Laurie DJ, Luddens H, Seeburg PH. Expression patterns of GABAA receptor subtypes in developing hippocampal neurons. Neuron 1991;7:92736.
  • 76
    Laurie DJ, Wisden W, Seeburg PH. The distribution of the thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 1992;12:415172.
  • 77
    Poulter MO, Barker JL, O'Carroll A-M, Lolait SJ, Mahan LC. Differential and transient expression of GABAA receptor α-sub-unit MRNAs in the developing rat CNS. J Neurosci Abst 1992;12:2888900.
  • 78
    Prince DA, Gutnick MJ. Neuronal activities in epileptogenic foci of immature cortex. Brain Res 1972;45:45568.
  • 79
    Purpura DP. Relationship of seizure susceptibility to morphological and physiologic properties of normal and abnormal immature cortex. In: KellawayP, PetersénI, eds. Neurologic and electro-encephalographic correlative studies in infancy New York : Grune & Stratton, 1964:11754.
  • 80
    Purpura DP. Stability and seizure susceptibility of immature brain. In: WardAA, PopeA, eds. Basic mechanisms of the epilepsies Boston : Little Brown, 1969:481505.
  • 81
    Purpura DP, Prelevic S, Santini M. Postsynaptic potentials and spike variations in feline hippocampus during postnatal ontogenesis. Exp Neurol 1968;22:40822.
  • 82
    Kriegstein AR, Suppes T, Prince DA. Cellular and synaptic physiology and epileptogenesis of the developing rat neocortical neurons in vitro. Dev Brain Res 1987;34:16171.
  • 83
    Moshé SL. The effects of age on the kindling phenomenon. Dev Psychobiol 1981;14:7581.
  • 84
    Moshé SL, Sharpless NS, Kaplan J. Kindling in developing rats: variability of afterdischarge thresholds with age. Brain Res 1981;211:1905.
  • 85
    Michelson HB, Lothman EW. An ontogenetic study of kindling using rapidly recurring hippocampal seizures. Dev Brain Res 1991;61:7985.
  • 86
    Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK. Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci 1993;13:457588.
  • 87
    Velisek L, Mares P. Increased epileptogenesis in the immature hippocampus. Exp Brain Res 1991;20:1835.
  • 88
    Purpura DP. Analysis of axodendritic synaptic organizations in immature cerebral cortex. Ann NY Acad Sci 1961;94:60454.
  • 89
    Purpura DP, Shofer RJ, Scarff T. Properties of synaptic activities and spike potentials of neurons in immature neocortex. J Neurophysiol 1965;28:92542.
  • 90
    Sawa M, Maruyama N, Kaji S. Intracellular potential recording during electrically induced seizures. Electroencephulogr Clin Neurophysiol 1963;15:20920.
  • 91
    Jensen FE, Applegate CD, Holzman D, Belin TR, Burchfiel JL. Epileptogenic effect of hypoxia in the immature rodent brain. Ann Neurol 1991;29:62937.
  • 92
    Cavalheiro EA, Silva DF, Turski WA, Calderazzo-Filho LS, Bortolotto ZA, Turski L. The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev Brain Res 1987;37:4358.
  • 93
    Liu Z, Gatt A, Mikati M, Holmes GL. Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res 1995;19:191204.
  • 94
    Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing Brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 1992;65:23746.
  • 95
    Stafstrom CE, Holmes GL, Chronopoulos A, Thurber S, Thompson JL. Age-dependent cognitive and behavior deficits following kainic acid-induced seizures. Epilepsia 1993;34:42032.
  • 96
    McCowan TJ, Breese GR. The developmental profile of seizure genesis in the inferior collicular cortex of the rat: relevance to human neonatal seizures. Epilepsia 1992;33:210.
  • 97
    Gilbert ME, Cain DP. A developmental study of kindling in the rat. Dev Brain Res 1982;2:3218.
  • 98
    Baram TZ, Hirsch E, Schultz L. Short-interval amygdala kindling in neonatal rats. Dev Brain Res 1993;73:7983.
  • 99
    Schmidt-Kastner R, Heim C, Sontag K-H. Damage of substantia nigra pars reticulata during pilocarpine-induced status epilepticus in the rat: immunohistochemistry study of neurons, astrocytes and serum-protein extravasation. Exp Brain Res 1991;86:12540.
  • 100
    Holmes GL, Thompson JL. Rapid kindling in the prepubescent rat. Brain Res 1987;433:2814.
  • 101
    Moshé SL, Albala BJ, Ackermann RF, Engel J Jr. Increased seizure susceptibility of the immature brain. Dev Brain Res 1983;7235.
  • 102
    Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 1969;25:295330.
  • 103
    Racine RJ, Burnham WM, Gartner JG, Levitan D. Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and interstimulation interval effects. Electroencephulogr Clin Neurophysiol 1973;35:5536.
  • 104
    Peterson SL, Albertson TE, Stark LG. Intertrial intervals and kindled seizures. ESP Neurol 1981;71:14453.
  • 105
    Duchowny MS, Burchfiel JL. Facilitation and antagonism of kindled seizure development in the limbic system of the rat. Electroencephulogr Clin Neurophysiol 1981;51:40316.
  • 106
    Burchfiel JL, Serpa KA, Duffy FH. Further studies of antagonism of seizure development between concurrently developing kindled limbic foci in the rat. ESP Neurol 1982;75:47689.
  • 107
    Sperber EF, Haas K, Moshé SL. Mechanism of kindling in developing animals. In: WadaJA, ed. Kindling 4 New York : Plenum Press, 1990:15767.
  • 108
    Hablitz JJ. Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. J Neurophysiol 1987;58:105265.
  • 109
    Hablitz JJ, Heinemann U. Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Dev Brain Res 1989;46:24352.
  • 110
    Swann JW. Synaptogenesis and epileptogenesis in developing neural networks. In: SchwartzkroinPA, MoshéSL, NoebelsJL, SwannJW, eds. Brain development and epilepsy New York : Oxford University Press, 1995:195233.
  • 111
    Schwartzkroin PA. Development of rabbit hippocampus: physiology. Dev Brain Res 1982;2:46986.
  • 112
    Dunwiddie TV. Age-related differences in the in vitro rat hippocampus: development of inhibition and the effects of hypoxia. Dev Neurosci 1981;4:16575.
  • 113
    Harris KM, Teyler TJ. Evidence for late development of inhibition in area CA1 of the rat hippocampus. Brain Res 1983;268:33943.
  • 114
    Schwartzkroin PA, Altschuler RJ. Development of kitten hippocampal neurons. Brain Res 1977;134:42944.
  • 115
    Brady RJ, Swann JW. Postsynaptic actions of baclofen associated with its antagonism of bicuculline-induced epileptogenesis in hippocampus. Cell Mol Neurobiol 1984;4:4038.
  • 116
    Janigro D, Schwartzkroin PA. Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an ‘in vitro’ study. Brain Res 1988;41:17184.
  • 117
    Schwartzkroin PA, Kunkel DD. Electrophysiology and morphology of the developing hippocampus of fetal rabbits. J Neurosci 1982;2:44862.
  • 118
    Schwartzkroin PA, Kunkel DD, Mathers LH. Development of rabbit hippocampus: anatomy. Dev Brain Res 1982;2:46368.
  • 119
    Schwartzkroin PA. Epileptogenesis in the immature CNS. In: SchwartzkroinPA, WhealHV, eds. Electrophysiology of epilepsy London : Academic Press, 1984:389412.
  • 120
    Hamon B, Heinemann U. Developmental changes in neuronal sensitivity to excitatory amino acids in area CAI of the rat hippocampus. Dev Brain Res 1988;38:28690.
  • 121
    Luhmann JH, Prince DA. Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 1991;65:24763.
  • 122
    Cherubini E, De Feo MR, Mecarelli O, Ricci GF. Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats. Dev Brain Res 1983;9:6977.
  • 123
    Moshé SL, Cornblath M. Developmental aspects of epileptogenesis. In: WyllieE, ed. The treatment of epilepsy: principles and practice Philadelphia : Lea & Febiger, 1993:99110.
  • 124
    Iadarola MJ, Gale K. Substantia nigra: site of anticonvulsant activity mediated by γ-Aminobutyric acid. Science 1982;218:123740.
  • 125
    Gilbert ME, Cain DP. A single neonatal pentylenetetrazol or hyperthermia convulsion increases kindling susceptibility in the adult rat. Dev Brain Res 1985;22:16980.
  • 126
    Turski L, Cavalheiro EA, Schwarz M, et al. Susceptibility to seizures produced by pilocarpine in rats after microinjection of isoniazid or γ-vinyl-GABA into the substantia nigra. Brain Res 1986;370:294309.
  • 127
    McNamara JO, Galloway MT, Rigsbee LC, Shin C. Evidence implicating substantia nigra in regulation of kindled seizure threshold. J Neurosci 1984;4:24107.
  • 128
    Okada R, Moshé SL, Wong BY, Sperber EF, Zhao D. Age-related substantia nigra-mediated seizure facilitation. ESP Neurol 1986;93:1807.
  • 129
    Farwell JR, Dodrill CB, Batzel LW. Neuropsychological abilities of children with epilepsy. Epilepsia 1985;26:395400.
  • 130
    Holmes GL. Diagnosis and management of seizures in children Philadelphia : W.B. Saunders, 1987.
  • 131
    Collins AL, Lennox WG. The intelligence of 300 private epileptic patients. Proc Assoc Res Nerv Ment Dis 1947;26:586603.
  • 132
    Holmes GL. Do seizures cause brain damage Epilepsia 1991; 32(suppl 5):S1428.
  • 133
    Holmes GL. The long-term effects of seizures on the developing Brain: clinical and laboratory issues. Brain Dev 1991;13:393409.
  • 134
    Rodin EA, Schmaltz S, Twitty G. Intellectual functions of patients with childhood-onset epilepsy. Dev Med Child Neurol 1986;28:2533.
  • 135
    Funakoshi A, Morikawa T, Muramatsu R, Yagi K, Seino M. A prospective WISC-R study in children with epilepsy. Jpn J Psychiatry Neurol 1988;42:5624.
  • 136
    Bourgeois BFD, Prensky AL, Palkes HS, Talent BK, Busch SG. Intelligence in epilepsy: a prospective study in children. Ann Neurol 1983;14:43844.
  • 137
    Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 1964;10: 23348.
  • 138
    Ounsted C. Lindsav J, Norman R. Biolonical factors in temporal lobe epilepsy. Lon& The Spastics Society Medical Education and Information Unit, in association with William Heinemann Medical Books, 1966. (Clinics in developmental medicine; no. 22.).
  • 139
    Annegers JF, Hauser WA, Elveback LR, Kurland LT. The risk of epilepsy following febrile convulsions. Neurology 1979;29:297303.
  • 140
    Rocca WA, Sharbrough FW, Hauser WA, Annegers JF, Schoen-berg BS. Risk factors for complex partial seizures: A population-based case-control study. Ann Neurol 1987;21:2231.
  • 141
    Aicardi J, Chevrie J-J. Consequences of status epilepticus in infants and children. In: Delgado-EscuetaAV, WasterlainCG, TreimanDM, PorterRJ, eds. Status epilepticus: mechanisms of brain damage and treatment New York : Raven Press, 1983:11525. (Advances in neurology; vol. 34.).
  • 142
    Cavanagh JB, Meyer A. Aetiological aspects of Ammon's horn sclerosis associated with temporal lobe epilepsy. Br MedJ 1956;2:14037.
  • 143
    Corsellis JAN, Bruton CJ. Neuropathology of status epilepticus in humans. In: Delgado-EscuetaAV, WasterlainCG, TreimanDM, PorterRJ, eds. Status epilepticus New York Raven Press, 1983:12931339.
  • 144
    Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34(suppl 1):S3753.
  • 145
    Zimmerman HM. The histopathology of convulsive disorders in children. J Pediatr 1941;13:85990.
  • 146
    Olney JW, Collins RC, Sloviter RS. Excitotoxic mechanisms of epileptic brain damage. Adv Neurol 1986;44:85777.
  • 147
    Represa A, Le Gal La Salle G, Ben-Ari Y. Hippocampal plasticity in the kindling model of epilepsy in rats. Neurosci Lett 1989;99:34550.
  • 148
    Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988;11:4659.
  • 149
    Nadler JV. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981;29:203142.
  • 150
    Fariello GG, Golden GT, Smith GG, Reyes PF. Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist. Epilepsy Res 1989;3:20613.
  • 151
    Lees GJ, Leong W. The non-NMDA glutamate antagonist NBQX blocks the local hippocampus toxicity of kainic acid, but not the diffuse extrahippocampal damage. Neurosci Lett 1992;143:3942.
  • 152
    Sloviter RS, Dempster DW. “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res Bull 1985;15:3960.
  • 153
    Monaghan DT, Cotman DW. Distribution on N-Methyl-D-aspartate sensitive L-[3H]glutamate binding sites in rat brain. J Neurosci 1985;5:290919.
  • 154
    Monaghan DT, Yao D, Cotman CW. L-[3H] glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis. Brain Res 1985;340:37883.
  • 155
    Cotman CW, Monaghan DT. Anatomical organization of excitatory amino acid receptors and their properties. In: SchwarczR, Ben-AriY, eds. Excitatory amino acids and epilepsy New York : Plenum Press, 1986:23752.
  • 156
    Tremblay E, Represa A, Ben-An Y. Autoradiographic localization of kainic acid binding sites in the human hippocampus. Brain Res 1985;343:37882.
  • 157
    Collingridge GL, Bliss TVP. MNDA brains—their role in long-term potentiation. Trends Neurosci 1987;10:28893.
  • 158
    Hori N, French-Mullen JMH, Carpenter DO. Kainic acid response and toxicity show pronounced Ca2+ dependence. Brain Res 1985;358:3804.
  • 159
    Kudo Y, Ogura A. Glutamate-induced increase in intracellular Ca++ concentration in isolated hippocampal neurons. Br J Pharmacol 1986;89:1918.
  • 160
    Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987;7:36979.
  • 161
    Choi DW. Glutamate toxicity and diseases of the nervous system. Neuron 1988;1:6234.
  • 162
    Orrenius S, McConkey D, Belloma G, Nicoterm P. Role of Ca[2+] in toxic killing. Trends Pharmacol Sci 1989;10:2815.
  • 163
    Siesjo BK. Historical review: calcium, ischemia, and death of brain cells. Ann NY Acad Sci 1988;522:63861.
  • 164
    Sloviter RS, Dean E, Sollas AI, Goodman JH. Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 1996;366:51633.
  • 165
    Pollard H, Charriaut-Marlangue S, Cantagrel S, et al. Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience 1994;63:718.
  • 166
    Cavalheiro EA, Czuzwar SJ, Kleinrok Z, Turski L, Turski WA. Intracerebral cholinomimetics produce seizure-related brain damage in rats. Br J Pharmacol 1983;79:284P.
  • 167
    Holmes GL, Thompson JL, Marchi T, Feldman DS. Behavioral effects of kainic acid administration on the immature brain. Epilepsia 1988;29:72130.
  • 168
    Holmes GL, Thompson JL. Effects of kainic acid on seizure susceptibility in the developing brain. Brain Res 1988;467:519.
  • 169
    Albala BJ, Moshé SL, Okada R. Kainic-acid-induced seizures: a developmental study. Dev Brain Res 1984;13:13948.
  • 170
    Moshé SL. Epileptogenesis and the immature brain. Epilepsia 1987; 28(suppl 1):S315.
  • 171
    Pisa M, Sanberg MR, Corcoran ME, Fibiger HC. Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: a possible model of human temporal lobe epilepsy. Brain Res 1980;200:4817.
  • 172
    Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985;14:375403.
  • 173
    Tauck D, Nadler JV. Evidence of functional mossy fiber sprouting in the hippocampal formation of kainic acid-treated rats. J Neurosci 1985;5:101622.
  • 174
    Cronin J, Dudek FE. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats. Brain Res 1988;474:1814.
  • 175
    Sutula TP. Experimental models of temporal lobe epilepsy: new insights from the study of kindling and synaptic reorganization. Epilepsia 1990;3l(supp1 3):S4554.
  • 176
    Sutula TP. The pathology of the epilepsies: insights into the causes and consequences of epileptic syndromes. In: DodsonWE, PellockJM, eds. Pediatric epilepsy: diagnosis and treatment New York : Demos, 1993:3744.
  • 177
    Soliviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1987;235: 736.
  • 178
    Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991;1:4166.
  • 179
    Sloviter RS. The functional organization of the hippocampal dentate gyms and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994;35:64054.
  • 180
    Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1995;235: 736.
  • 181
    Danscher G. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry 1981;71:116.
  • 182
    Golarai G, Paroda I, Sutula T. Mossy fibers synaptic reorganization induced by repetitive pentylenetetrazol seizures. Soc Neurosci Ahstr 1988;14:882.
  • 183
    Stanfield BB. Excessive intra- and supragranular mossy fibers in the dentate gyrus of tottering (tg/tg) mice. Brain Res 1989;480: 2949.
  • 184
    Sutula T, Harrison C, Steward O. Chronic epileptogenesis induced by kindling of the entorhinal cortex: the role of the dentate gyrus. Brain Res 1986;385:2919.
  • 185
    Sutula T, Xiao-Xian H, Cavazos J, Scott G. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 1988;239:114750.
  • 186
    Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque PF. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991;42:35163.
  • 187
    Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26:32130.
  • 188
    Mathem GW, Leite JP, Pretorius JK, Quinn B, Peacock WJ, Babb TL. Children with severe epilepsy: evidence of hippocampal neuron losses and aberrant mossy fiber sprouting during postnatal granule cell migration and differentiation. Dev Brain Res 1994;78:7080.
  • 189
    Babb TL, Brown WJ. Neuronal, dendritic and vascular profiles of human temporal lobe activity correlated with cellular physiology “in vivo. Adv Neurol 1986;44:94966.
  • 190
    Babb TL, Pretorius JK, Kupfer WR, Crandall PH. Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 1989;9:256274.
  • 191
    Sherwin AL, Quesney LF, Gauthier S, et al. Enzyme changes in actively spiking areas of human epileptic cerebral cortex. Neurology 1984;34:92733.
  • 192
    Tursky T, Lassanova M, Sramka M, Nadvornik P. Formation of glutamate and GABA in epileptogenic tissue from human hippocampus in vitro. Actu Neurochir 1976;23:1118.
  • 193
    Bekenstein JW, Lothman EW. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 1993;259:97100.
  • 194
    Obenaus A, Esclapez M, Houser CR. Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures. J Neurosci 1993;13:447085.
  • 195
    Thurber S, Chronopoulos A, Stafstrom CE, Holmes GL. Behavioral effects of continuous hippocampal stimulation in the developing rat. Dev Brain Res 1992;68:3540.
  • 196
    Sperber EF, Haas KZ, Stanton PK, Moshé SL. Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Dev Brain Res 1991;60:8893.
  • 197
    Hirsch E, Baram TZ, Snead OC III. Ontogenic study of lithiumpilocarpine-induced status epilepticus in rats. Brain Res 1992;583:1206.
  • 198
    Thurber S, Mikati MA, Stafstrom CE, Jensen FE, Holmes GL. Quisqualic acid-induced seizures during development: a behavioral and EEG study. Epilepsia 1994;35:86875.
  • 199
    Liu Z, Stafstrom C, Sarkisian M, et al. Age-dependent effects of glutamate toxicity in the hippocampus. Brain Res (in press).
  • 200
    Baram TZ, Rib CE. Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. NeuroReport 1995;6:27780.
  • 201
    Ribdk CE, Baram TZ. Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. Dev Brain Res 1996;91:24551.
  • 202
    Campochiaro P, Coyle JT. Ontogenic development of kainate neurotoxicity: correlates with glutamatergic innervation. Proc Natl Acad Sci USA 1978;75:20259.
  • 203
    Barca MA, Toledano A. Histochemical electron microscopic study of the enzyme glutamate dehydrogenase (GD) in post-natal developing cerebellum. Cell Mol Biol 1982;28:18795.
  • 204
    Rothe F, Schmidt W, Wolf G. Postnatal changes in the activity of glutamate dehydrogenase and aspartate aminotransferase in the rat nervous system with special reference to the glutamate transmitter metabolism. Dev Brain Res 1983;11:6774.
  • 205
    Kvamme E, Svenneby G, Torgner IAA, Drejer J, Schousboe A. Postnatal development of glutamate metabolizing enzymes in hippocampus from mice. Int J Dev Neurosci 1985;3:35964.
  • 206
    Minc-Golomb D, Levy Y, Kleinberger N, Schramm M. o-[3H]-Aspartate release from hippocampus slices studied in a multiwell system: controlling factors and postnatal development of release. Brain Res 1987;402:25563.
  • 207
    Schmidt W, Wolf G: High-affinity uptake of L-[3H]glutamate and D-[3H]aspartate during postnatal development of the hippocampdl formation: a quantitative autoradiographic study. Exp Brain Res 1988;70:504.
  • 208
    Gaiarsa JL, Zagrean L, Ben-Ari Y. Neonatal irradiation prevents the formation of hippocampal mossy fibers and the epileptic action of kainate on rat CA3 pyramidal neurons. J Neurophysiol 1994;71:20415.
  • 209
    Nicoletti F, Iadarola MJ, Wrobleswski JT, Costa E. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with 011–adrenoceptors. Proc Nutl Acad Sci USA 1986;83:19315.
  • 210
    Ferriero DM, Arcavi LJ, Simon RP. Ontogeny of excitotoxic injury to nicotinamide adenine dinucleotide phosphate diaphorase reactive neurons in the neonatal rat striatum. Neuroscience 1990;36:41724.
  • 211
    Brady RJ, Gorter JA, Monroe MT, Swann JW. Developmental alterations in the sensitivity of hippocampal NMDA receptors to APS. Dev Brain Res 1994;83:1906.
  • 212
    McDonald JW, Silverstein FS, Johnston MV. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 1988;459:2003.
  • 213
    McDonald JW, Johnston MV. Pharmacology of N-methyl-D-aspartate-induced brain injury in an in vivo perinatal rat model. Synapse 1990;6:17988.
  • 214
    McDonald JW, Trescher WH, Johnston MV. Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development. Brain Res 1992;583:5470.
  • 215
    McDonald JW, Trescher WH, Johnston MV. The selective ionotropic-type quisqualate receptor agonist AMPA is a potent neurotoxin in immature rat brain. Brain Res 1990;526:1658.
  • 216
    Silverstein FS, Chen R, Johnston MV. The glutamate analogue quisqualic acid is neurotoxic of immature rat brain. Neurosci Lett 1986;71:138.
  • 217
    Silverstein FS, Chen RC, Johnston MV. The glutamate agonist quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain. Neurosci Lett 1986;71:138.
  • 218
    Trescher WH, McDonald JW, Johnston MV. Quinolinate-induced injury is enhanced in developing rat brain. Dev Brain Res 1994;83:22432.
  • 219
    Young RSK, Petroff OAC, Aquila WJ, Yates J. Effects of glutamate, quisqualate, and N-methyl-D-aspartate in neonatal brain. Enp Neurol 1991;111:3628.
  • 220
    Wolf G, Keilhoff G. Kainate and glutamate neurotoxicity in dependence on the postnatal development with special reference to hippocampal neurons. Dev Brain Res 1984;14:1521.
  • 221
    Kish PE, Kim SY, Ueda T. Ontogeny of glutamate accumulating activity in rat brain synaptic vesicles. Neurosci Lett 1989;97:18590.
  • 222
    Bickler PE, Gallego SM, Hansen BM. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia. J Cereb Blood Flow Metub 1993;13:8119.
  • 223
    Carmant L, Liu Z, Werner SJ, Mikati MA, Holmes GL. Effect of kainic acid-induced status epilepticus on inositol-trisphosphate and seizure-induced brain damage in mature and immature animals. Dev Brain Res 1995;89:6772.
  • 224
    Irvine RF. Inositol tetrakisphosphate as a second messenger: confusions, contradictions and a potential resolution. BioEssays 1991;13:41927.
  • 225
    Mitani A, Yanase H, Sakai K, Wake Y, Kataoka K. Origin of intracellular calcium elevation induced by in vitro ischemia-like condition in hippocampal slices. Brain Res 1993;601:10310.
  • 226
    Sperber EF, Weireter KK, Kubova H, Romero M-T. Age-related changes in pmalbumin immunoreactivity following kainic acid seizure. Soc Neurosci Abstr 1995;21:1473.
  • 227
    Burke JP, Hablitz JJ. Modulation of epileptiform activity by metabotropic glutamate receptors in immature rat neocortex. J Neurophysiol 1995;73:20517.
  • 228
    Vecil GG, Li PP, Warsch JJ. Evidence for metabotropic excitatory amino acid receptor heterogeneity: developmental and brain regional studies. J Neurochem 1992;59:2528.
  • 229
    McDonald JW, Fix AS, Tizzano JP, Schoepp DD. Seizures and brain injury in neonatal rats induced by lS,3R-ACPD, a metabotropic glutamate receptor agonist. J Neurosci 1993;13:444555.
  • 230
    Aniksztejn L, Sciancalepore M, Ben-Ari Y. Persistent current oscillations produced by activation of metabotropic glutamate receptors in immature CA3 hippocampal neurons. J Neurophysiol 1995;73:14229.
  • 231
    Franck JE, Schwartzkroin PA. Immature rabbit hippocampus is damaged by systemic but not intraventricular kainic acid. Dev Brain Res 1984;13:21927.
  • 232
    Neill J, Liu Z, Sarkisian M, et al. Recurrent seizures in immature rats: effect on auditory and visual discrimination. Dev Brain Res 1996;95:28392.
  • 233
    Camfield CS, Chaplin S, Doyle A-B, Shapiro SH, Cummings C, Camfield PR. Side effects of phenobarbital in toddlers; behavioral and cognitive aspects. J Pediatr 1979;95:3615.
  • 234
    Vining EPG, Mellits D, Dorsen M, et al. Psychological and behavioral effects of antiepileptic drugs in children: a double blind comparison between phenobarbital and valproic acid. Pediatrics 1987;80:16574.
  • 235
    Herranz JL, Armijo JA, Artega R. Clinical side effects of phenobarbital, primidone, phenytoin, carbamazepine, and valproate during monotherapy in children. Epilepsia 1988;29:794804.
  • 236
    Fanvell JR, Lee YJ, Hirtz DG, Sulzbacher SI, Ellenberg JH, Nelson KB. Phenobarbital for febrile seizures. Effects on intelligence and on seizure recurrence. N Engl J Med 1990;322:3649.
  • 237
    Fishman RHB, Yanai J. Long-lasting effects of early barbiturates on central nervous system and behavior. Neurosci Biobehav Rev 1983:7:1928.
  • 238
    Diaz J, Schain RJ, Bailey BG. Phenobarbital-induced brain growth retardation in artificially reared rat pups. Biol Neonate 1977;32:7782.
  • 239
    Yanai J, Roselli-Austin L, Tabakoff B. Neuronal deficits in mice. following prenatal exposure to phenobarbital. Exp Neurol 1979;64:23744.
  • 240
    Serrano EE, Kunis DM, Ransom BR. Effects of chronic phenobarbital exposure on cultured mouse spinal cord neurons. Ann Neurol 1988;24:42938.
  • 241
    Bergey GK, Swaiman KF, Schrier BK, Fitzgerald S, Nelson PG. Adverse effects of phenobarbital on morphological and biochemical development of fetal mouse spinal cord neurons in culture. Ann Neurol 1981;9:5849.
  • 242
    Leite JR, Rodriguez De Lores Amaiz G. Effect of chronic administration and withdrawal of sodium barbitone on protein synthesis of rat brain. Pharmacol Biochem Behav 1978;8:3236.
  • 243
    Telwari S, Greenberg SA, Do K, Grey PA. The response of rat brain protein synthesis to ethanol and sodium barbital. Alcohol Drug Res 1987;7:24358.
  • 244
    Pick CG, Yanai J. Long-term reduction in spontaneous alternations after early exposure to phenobarbital. Int J Dev Neurosci 1984;2:2238.
  • 245
    Diaz J, Schain RJ. Phenobarbital: effects of long-term administration on behavior and brain of artificially reared rats. Science 1978;199:901.
  • 246
    Renfrey G, Schlinger H, Jakubow J, Poling A. Effects of phenytoin and phenobarbital on schedule-controlled responding and seizure activity in the amygdala-kindled rat. J Pharmacol Exp Ther 1989;248:96773.
  • 247
    Wilks LJ, File SE, Dingemanse J. Hyperactivity and increased aggression in the rat several hours after a single dose of phenobarbital. Pharmacopsychologia 1988;1:2331.
  • 248
    File SE, Wilks LJ. Changes in seizure threshold and aggression during chronic treatment with three anticonvulsants and on drug withdrawal. Psychopharmacology 1990;100:23742.
  • 249
    McBride MC, Rosman NP, Davidson SJ, Oppenheimer EY. Long-term behavioral effects of phenobarbital in suckling rats. Exp Neurol 1985;89:5970.
  • 250
    Weinberger SB, Killam EK. Alterations in learning performance in the seizure-prone baboon: effects of elicited seizures and chronic treatment with diazepam and phenobarbital. Epilepsia 1978;19:30116.
  • 251
    Mikati MA, Holmes GL, Chronopoulos A, et al. Phenobarbital therapy modifies seizure related brain injury in the developing brain. Ann Neurol 1994;36:42533.
  • 252
    McNamara JO. Cellular and molecular basis of activity. J Neurosci 1994;14:341325.