• 1
    Temkin O. The falling sickness. 2nd ed. Baltimore : Johns Hopkins Press, 1971.
  • 2
    Scott DF. The history of epileptic therapy: account of how medication was discovered Pearl River , NY : Parthenon Publishing Group, 1993.
  • 3
    Hippocrates. On the sacred disease. In: Ouvres completes d'Hippocrate par E. Littre. Paris : 18391861.
  • 4
    Saunders DC, O'Malley CD. Vesalius Cleveland : World Pulishing, 1950.
  • 5
    Gilbert R. De magnete magnetisque corporibus et de magno magneto tellure: physiologica nova plurimus et argumentis et experimentis demonstrata London : Peter Short, 1600. (English translation, New York : Dover Press, 1958).
  • 6
    Galileo G. Dialogues on two chief systems of the world (Translation). London : Salisbury, 1667.
  • 7
    Aldini G. Essai theorique et experimental sur le galvanisme Paris : Fournier, 1804; 1 (plate 5): 1–398.
  • 8
    Galvani L. De viribus electricitatis in muto musculare commentarius. Vol 7. De Bononiensi Scientiarum et Artrium Instituto atque Academia Commentani, 1791:363.
  • 9
    Aldini G. De animali electricitae dissertationes duae Bologna , Italy : Bonaniae: Ex Typographia Instituti Scientificarum, 1794.
  • 10
    von Humboldt FA. Versuche über de gereizte Muskel und Nervenfaser Berlin : Decker, Posen, and Rottman, 1797.
  • 11
    Volta AGA. Letter to Sir Joseph Banks, March 20, 1800: on electricity excited by the mere contact of conducting substances of different kinds. Philos Trans R Soc Lond 1800; 90:40343.
  • 12
    DuBois-Raymond E. Untersuchungen über thierische Electricität Vols I, II. Berlin : Reimer, 1849.
  • 13
    Fritsch GT, Hitzig E. Über die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol 1870; 37:30032.
  • 14
    Caton R. The electrical currents of the brain. Br Med J 1875; 2:278.
  • 15
    Pravdich-Neminsky W. Ein Versuch der Registrierung der Elektrischen Gehirnerscheinungen. Zentralbl Physiol 1912; 27:95160.
  • 16
    Cybulsky N, Jelenska-Macieszyna X. Action currents of the cerebral cortex [in Polish]. Bull Acad Sci Cracov 1914; B:77681.
  • 17
    Jackson, JH. Selected writings of John Hughlings Jackson. TaylorJ, ed. London : Hodder & Staughton, 1931.
  • 18
    Gowers, WR. Epilepsy and other chronic convulsive diseases: their causes, symptoms and treatment London : J & A Churchill, 1881.
  • 19
    Sommer W. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 1880: 10:63175.
  • 20
    Locock C. Discussion of a paper by E.H. Sievking: meeting of the Royal Medical and Chirugical Society of London. Lancet 1857; 1:527.
  • 21
    Sieveking EH. Analysis of 52 cases of epilepsy observed by the author. Lancet 1857; 1:5278.
  • 22
    TurnerWA, ed. Epilepsy, a study of the idiopathic disease New York Macmillan, 1907. [Reprinted by Raven Press, New York, 1973].
  • 23
    Hauptmann A. Luminal bei epilepsie. Munch Med Wochenschr 1912; 59:19079.
  • 24
    Putnam TJ, Merritt HH. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 1937; 85:5256.
  • 25
    Merritt HH, Putnam TJ. Sodium diphenyl hydantoinate in the treatment of convulsive disorders. JAMA 1938; 111:106873.
  • 26
    Berger H. Uber das Electrenkephalogramm des Menschen. Arch Psychiatr Neyenkr 1929; 87:52770.
  • 27
    Berger H. Uber das Electrenkephalogramm des Menschen. Siebente Mitteilung. Arch Psychiatr Nervenkr 1933; 100:30120.
  • 28
    Gibbs FA, Davis H, Lennox WG. The EEG in epilepsy and in the impaired states of consciousness. Arch Neurol Psychiatry 1935; 34:113348.
  • 29
    Gibbs FA, Lennox WG, Gibbs EL. The electroencephalogram in diagnosis and in localizaton of epileptic seizures. Arch Neurol Psychiatry 1936; 36:122535.
  • 30
    Jasper HH. Localized analyses of the function of the human brain by the electro-encephalogram. Arch Neurol Psychiatry 1936; 36:.
  • 31
    Brazier MAB. The EEG Journal loses one of its founders. Electroencephalogr Clin Neurophysiol 1972; 33(2):iii.
  • 32
    Pope A, Morris AA, Jasper H, Elliott KAC, Penfield W. Histo-chemical and action potential studies on epileptogenic areas of cerebral cortex in man and the monkey. Res Pub1 Assoc Res Nerv Ment Dis 1946; 26:218.
  • 33
    Hunter J, Jasper HH. A method of simultaneous analysis of seizures and EEG on film. Electroencephalogr Clin Neurophysiol 1949; 1:113.
  • 34
    Goldensohn ES. Simultaneous recording of EEG and clinical seizures using kinescope. Electroencephalogr Clin Neurophysiol 1966; 21:623.
  • 35
    Delgado-Escueta AV, Nashold B, Freedman M, et al. Videotaping epileptic attacks during stereoelectroencephalography. Neurology 1979; 29:47389.
  • 36
    Forbes A, Thatcher C. Amplification of action currents with the electron tube in recording with the string galvanometer. Am J Physiol 1920; 52:40971.
  • 37
    Eccles JC. Alexander Forbes and his achievement in electrophysiology. Perspect Biol Med 1970; 13:388404.u.
  • 38
    Renshaw B, Forbes A, Morison BR. Activity of isocortex and hippocampus: electrical studies with microelectrodes. J Neurophysiol 1940; 3:74105.
  • 39
    Ajmone-Marsan C. Chronic intracranial recording and electrocorticography. In: DalyDD, PedleyTA, eds. Current practice of clinical electroencephalography. 2nd ed. New York : Raven Press, 1990: 53560.
  • 40
    Penfield W, Jasper HH. Epilepsy and the functional anatomy of the human brain Boston : Little, Brown, 1954.
  • 41
    Niedermeyer E. Historical aspects. In: NiedermeyerE, Lopes da SilvaF, eds. Electroencephalography. 3rd ed. Baltimore : Williams & Wilkins, 1993: 114.
  • 42
    Ebersole JS. EEG and MEG dipole source modeling. In: EngelJJr, PedleyTA, eds. Epilepsy: a comprehensive textbook New York : Lippincott-Raven (in press).
  • 43
    Penry JK, Dreifuss FE. Automatisms associated with the absence of petit ma1 epilepsy. Arch Neurol 1969; 21:1429.
  • 44
    Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised seizure classification. Epilepsia 1981; 22:489501.
  • 45
    Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 22:489501.
  • 46
    van Buren JM, Ajmone-Marsan C, Mutsuga N, et al. Surgery of temporal lobe epilepsy. In: PurpuraD, PenryJK, WalterRD, eds. Neurosurgical management of the epilepsies New York : Raven Press, 1975: 15596.
  • 47
    Gibbs FA, Lennox WG, Gibbs EL. Cerebral blood flow preceding and accompanying epileptic seizures in man. Arch Neurol Psychiatry 1934; 32:25772.
  • 48
    Sakai F, Meyer JS, Naritomi H, Hsu MC. Regional cerebral blood flow and EEG in patients with epilepsy. Arch Neurol 1978; 35: 64857.
  • 49
    Lee BI, Markand ON, Wellman HN, et al. HIPDM-SEPCT in patients with medically intractable complex partial seizures: ictal study. Arch Neurol 1988; 45:397402.
  • 50
    Marks DA, Katz A, Hoffer P, Spencer SS. Localization of extra-temporal epileptic foci during ictal single photon emission computed tomography. Ann Neurol 1992; 31:2505.
  • 51
    Kuhl DE, Engel J Jr, Phelps ME, et al. Epileptic patterns of local cerebral glucose metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 1980; 8:34860.
  • 52
    Engel J, KuhI DE, Phelps ME, Rausch R, Nnwer M. Local cerebral metabolism during partial seizures. Neurology 1983; 33: 40013.
  • 53
    Engel J Jr, KuhI DE, Phelps ME. Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 1982; 218: 646.
  • 54
    Theodore WH, Brooks R, Sato S, et al. Positron emission tomography in generalized seizures. Neurology 1985; 35:68490.
  • 55
    Theodore WH, Sato S, Kufta C, et al. Temporal lobectomy for uncontrolled seizures: the role of positron emission tomography. Ann Neurol 1992; 32:78994.
  • 56
    Chugani HT, Shewmon DA, Shields WD, et al. Surgery for intractable infantile spasms: imaging perspectives. Epilepsia 1993; 34:76471.
  • 57
    Theodore WH. Antiepileptic drugs and cerebral glucose metabolism. Epilepsia 1988; 29(suppl 2):S4855.
  • 58
    Frost JJ, Mayberg HS, Fisher RS, et al. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol 1988; 23:2317.
  • 59
    Henry TR, Frey KA, Sackellares JC, et al. In vivo cerebral metabolism and central benzodiazepine receptor binding in temporal lobe epilepsy. Neurology 1993; 43:19982006.
  • 60
    Hugg J, Laxer K, Matson G, et al. Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging. Neurology 1992; 42:2018.
  • 61
    Kuzniecky R, Elgavish GA, Hetherington HP, Evanochko WT, Pohost GM. In vivo 31P nuclear magnetic resonance spectroscopy of human temporal lobe epilepsy. Neurology 1992; 42:158690.
  • 62
    Petroff OAC, Rothman DL, Behar KL, Mattson RH. Initial observations on effect of vigabatrin on in vivo 1H spectroscopic measurements of gamma-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia 1995; 36:45764.
  • 63
    Pardo JV, Fox PT. Preoperative assessment of the cerebral hemispheric dominance for language with CBF PET. Hum Brain Mapping 1993; 1:5768.
  • 64
    Swartz BS, Haigren E, Fuster JM, et al. Cortical metabolic activation in humans during a visual memory task: an 18FDG-PET study of cortical activation during a short-term visual memory task in humans. Cereb Cortex 1995; 5:20514.
  • 65
    Desmond JE, Sum JM, Wagner AD, et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain 1995; 118:141120.
  • 66
    Haglund MM, Ojemann GA, Schwartz TW, Lettich E. Neuronal activity in human lateral temporal cortex during serial retrieval from short-term memory. J Neurosci 1994; 14:150715.
  • 67
    Goodman LS, Grewal MS, Brown WC, Swinyard EA. Comparison of maximal seizures evoked by pentylenetetrazol (Metrazol) and electroshock in mice, and their modification by anticonvulsants. J Pharmacol Exp Ther 1953; 108:16876.
  • 68
    Richards RK, Everett GM. Analgesic and anticonvulsant properties of 3,5,5–trimethyloxazolidine-2,4–dione (Tridione). Fed Proc 1944; 3:39.
  • 69
    Lennox WG. The petit ma1 epilepsies: their treatment with Tridione. JAMA 1945; 129:106974.
  • 70
    Porter RJ, Cereghino JJ, Gladding GD, et al. Antiepileptic Drug Development Program. Cleve Clin Q 1984; 51:293305.
  • 71
    Flanigin HF, Hermann BP, King DW, Gallagher BB, Smith JR. The history of surgical treatment of epilepsy in North America prior to 1975. In: LudersH, eds. Epilepsy surgery New York Raven Press, 1991: 1936.
  • 72
    O'Leary JL, Goldring S. Science and epilepsy New York : Raven Press, 1976: 11952.
  • 73
    Jasper HH. Diffuse projection system. The integrative action of the thalamic reticular system. Electroencephalogr Clin Neuro-physiol 1949; 1:40520.
  • 74
    Steriade M, Contreras D, Amzica F. Synchronized sleep oscillations and their paroxysmal developments. Trends Neurol Sci 1994; 17:199208.
  • 75
    von Krosigk M, Bal T, Mccormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 1993; 261: 3614.
  • 76
    Gibbs EL, Lennox WG, Gibbs FA. Variations in the carbon dioxide content of the blood in epilepsy. Arch Neurol Psychiatry 1940; 43:223.
  • 77
    Timiras PS, Woodbury DM, Goodman LS. Effect of adrenalectomy, hydrocortisone acetate and desoxycorticosterone acetate on brain excitability and electrolyte distribution in mice. J Pharmacol Exp Ther 1954; 1112:80.
  • 78
    Woodbury DM, Rollins LT, Gardner MD, et al. Effects of carbon dioxide in brain excitability and electrolytes. Am Physiol 1958; 192:79.
  • 79
    McKhann GM, Tower DB. Ammonia toxicity and cerebral oxi-dative metabolism. Am J Physiol 1961; 200:4204.
  • 80
    Kennard DW. Glass microcapillary electrodes used for measuring potential in living tissues. In: DonaldsonPEK, ed. Electronic apparatus for biological research London : Butterworths, 1958: 53467.
  • 81
    Morison RS, Dempsey EW. Mechanism of thalamocortical augmentation and repetition. Am J Physiol 1943; 138:297308.
  • 82
    Atkinson JR, Ward AA Jr. Intracellular studies of cortical neurons in chronic epileptogenic foci in the monkey. Exp Neurol 1964; 10:285.
  • 83
    Kandel ER, Spencer WA. Electrophysiology of hippocampal neurons. II. Afterpotentials and repetitive firing. J Neurophysiol 1961; 24:24359.
  • 84
    Kandel ER, Spencer WA. Excitation and inhibition of single pyramidal cells during hippocampal seizure. Exp Neurol 1961; 4:162.
  • 85
    Kandel ER, Spencer WA. The pyramidal cell during hippocampal seizure. Epilepsia 1961; 2:639.
  • 86
    Goldensohn ES, Shofer RJ, Purpura DP. Ontogenesis of focal discharges in epileptogenic lesions of cat neocortex. Electroencephalogr Clin Neurophysiol 1963; 15:1634.
  • 86a
    Goldensohn ES, Purpura DP. Intracellular potentials of cortical neurons during focal epileptogenic discharges. 1963; 139:8402.
  • 87
    Goldensohn ES, Perez M, Feier J. Intracellular potentials and unit discharge patterns in primary and mirror epileptogenic foci. Electroencephalogr Clin Neurophysiol 1965; 18:519.
  • 88
    Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944; 7:35990.
  • 89
    Kopeloff LM, Chusid JG, Kopeloff N. Epilepsy in Macacca mulatta after cortical or intracerebral alumina. Arch Neurol Psychiatry 1955; 74:5236.
  • 90
    Roberts E. Inhibition in the nervous system and gamma-aminobutyric acid New York : Pergamon Press, 1960.
  • 91
    Mattson RH, Bickford RO. Firing patterns of strychnine spikes in the cortex of the cat. Electroencephalogr Clin Neurophysiol 1961; 13:1445.
  • 92
    Matsumoto H, Ajmone-Marsan C. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 1964; 9:286304.
  • 93
    Walker AE, Johnston HC. Convulsive factor in commercial penicillin. Arch Surg 1945; 50:6973.
  • 94
    Ward AA Jr. The epileptic neuron: chronic foci in animals and man. In: JasperHH, WardAAJr, PopeA, eds. Basic mechanisms of the epilepsies Boston : Little, Brown, 1969: 26388.
  • 95
    Echlin FA. The supersensitivity of chronically “isolated” cerebral cortex as a mechanism in focal epilepsy. Electroencephalogr Clin Neurophysiol 1959; 11:697722.
  • 96
    Sharpless SK, Halpern LM. The electrical excitability of chronically isolated cortex studied by means of permanently implanted electrodes. Electroencephalogr Clin Neurophysiol 1962; 14:24455.
  • 97
    Crain SM, Bornstein MB. Bioelectric activity of neonatal mouse cerebral cortex during growth and differentiation in tissue culture. Exp Neurol 1964; 10:42550.
  • 98
    Creutzfeldt OD, Watanahe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 1966; 20:1937.
  • 99
    Matsumoto H, Ajmone-Marsan C. Cellular mechanisms in experimental epileptic seizures. Science 1964; 144:193.
  • 100
    Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA. Genesis of epileptic interictal spikes: new knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 1973; 52:117.
  • 101
    Dichter MA, Spencer WA. Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J Neurophysiol 1969; 32:66387.
  • 102
    Prince DA. The depolarization shift in “epileptic” neurons. Exp Neurol 1968; 21:46785.
  • 103
    Goldring S, O'Leary JL. Cortical DC changes incident to midline thalamic stimulation. Electroencephalogr Clin Neurophysiol 1957; 9:57784.
  • 104
    Karahashi Y, Goldring S. Intracellular potentials from “idle” cells in cerebral cortex of cat. Electroencephalogr Clin Neurophysiol 1966; 20:600.
  • 105
    Nicholls JG, Kuffler SW. Extracellular space as a pathway for exchange between blood and neurons in central nervous system of leech: the ionic composition of glial cells and neurons. J Neurophysiol 1964; 27:645.
  • 106
    Ransom BR, Goldring S. Slow depolarization in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 1975; 36:86978.
  • 107
    Futamachi KJ, Pedley TA. Glial cells and extracellular potassium: their relationship in mammalian cortex. Brain Res 1976; 109:31122.
  • 108
    Lux HD. The kinetics of extracellular potassium: relation to epileptogenesis. Epilepsia 1974; 15:37593.
  • 109
    Fisher RS, Pedley TA, Moody WJ Jr, Prince DA. The role of extracellular potassium in hippocampal epilepsy. Arch Neurol 1976; 33:7683.
  • 110
    Zuckermann EC, Glaser GH. Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp Neurol 1968; 20:87110.
  • 111
    Fertziger AP, Ranck JB. Potassium accumulation in interstitial space during epileptiform seizures. Exp Neurol 1970; 26:57185.
  • 112
    Pollen DA, Trachtenberg MC. Neuroglia: gliosis and focal epilepsy. Science 1970; 167:12523.
  • 113
    Westrum LE, White LE Jr, Ward AA Jr. Morphology of the experimental epileptic focus. J Neurosurg 1964; 21:103346.
  • 114
    Scheihel ME, Crandall PH, Scheibel AB. The hippocampal-dentate complex in temporal lobe epilepsy: a golgi study. Epilepsia 1974; 15:5580.
  • 115
    Schwartzkroin PA, Wyler AR. Mechanisms underlying epileptiform burst discharge. Ann Neurol 1980; 7:95107.
  • 116
    Falconer MA. Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy: aetiology, treatment and prevention. Lancet 1974; 2:76770.
  • 117
    Tower DB. Nature and extent of the biochemical lesion in human epileptogenic cerebral cortex: an approach to its control in vitro and in vivo. Neurology 1955; 5:113.
  • 118
    Celesia GC, Jasper HH. Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 1966; 16:1053.
  • 119
    Swinyard EA. Laboratory assay of clinically effective antiepileptic drugs. J Am Pharmacol Assoc 1949; 38:2014.
  • 120
    JasperHH, WardAAJr, PopeA, eds. Basic mechanisms of the epilepsies Boston : Little, Brown, 1969.
  • 121
    PurpuraDP, PenryJK, TowerD, WoodburyDM, WalterR, eds. Experimental models of epilepsy-a manual for the laboratory worker New York Raven Press, 1972.
  • 122
    Li C-L, McIlwain H. Maintenance of resting membrane potentials in slices of mammalian and cerebral cortex and other tissues in vitro. J Physiol 1957; 139:17890.
  • 123
    Gibson IM, McIlwain H. Continuous recording of changes in membrane potential in mammalian cerebral tissues in vitro; recovery after depolarization by added substances. J Physiol 1961; 176:26183.
  • 124
    Yamamoto C. Intracellular study of seizure-like after discharge elicited in thin hippocampal sections in vitro. Exp Neurol 1972; 35:15464.
  • 125
    Schwartzkroin PA, Prince DA. Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 1978; 147: 11730.
  • 126
    Thompson SM, Gahwiler BH. Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J Neurophysiol 1989; xx:50111.
  • 127
    Barker JL, Mathers DA. GABA receptors and the depressant action of pentobarbital. Trends Neurol Sci 1981; Jan:1013.
  • 128
    Twyman RE, Rogers CJ, Macdonald RL. Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 1989; 25:21320.
  • 129
    Kay AR, Wong RKS. Calcium current activation kinetics in isolated pyramidal neurones of the CAI region of the mature guinea-pig hippocampus. J Physiol 1987; 392:60316.
  • 130
    Killiam KF, Killiam EK, Naquet R. An animal model of light sensitive epilepsy. Electroencephalogr Clin Neurophysiol 1967; 22:497.
  • 131
    Goddard GV, McIntyre DC, Leech CKA. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 1969; 25:295330.
  • 132
    Wasterlain CG, Jonec V. Chemical kindling by muscarinic amygdaloid stimulation in the rat. Brain Res 1983; 271:31123.
  • 133
    Lothman EW, Hatlelid JM, Zorumski CF, et al. Kindling with rapidly recurring hippocampal seizures. Brain Res 1985; 360:8391.
  • 134
    Fisher RS. Animal models of the epilepsies. Brain Res Rev 1989; 14:24578.
  • 135
    Nadler JV, Perry BW, Cotman CW. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 1978; 271:6767.
  • 136
    Ben-An Y, Treniblay E, Ottersen OP, Meldrum BS. The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid. Brain Res 1980; 191:7997.
  • 137
    Turski WA, Cavalheiro EA, Schwartz M, et al. Limbic seizures produced by pilocarpine in rats: behavioral, electroencephalographic, and neuropathological study. Behav Brain Res 1983; 9: 31536.
  • 138
    Meldrum BS, Balzano E, Gadea M, Naquet R. Photic and drug-induced epilepsy in the baboon (Papio papio); the effects of isoniazid, thiosemicarbazide, pyridoxine and amino-oxyacetic acid. Electroencephalogr Clin Neurophysiol 1970; 29:33347.
  • 139
    Fuller JL, Collins RL. Mice unilaterally sensitized for audiogenicc seizures. Science 1968; 162:1295.
  • 140
    Jobe PC, Picchioni AL, Chin L. Role of brain norepinephrine in audiogenic seizure in the rat. J Pharmacol Exp Ther 1973; 184: 110.
  • 141
    Suauki J, Nakamoto Y. Seizure patterns and electroencephalograms in the EI mouse. Electroencephalogr Clin Neurophysiol 1977; 43:229311.
  • 142
    Noebels JL. A single gene error in noradrenergic growth synchronizes central neurons. Nature 1984; 310:40911.
  • 143
    Hosford D, Clark S, Cao Z, et al. The role of GABA(B) receptor activation in absence seizures of lethargic (lh/lh) mice. Science 1992; 257:398401.
  • 144
    Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter J-M. Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol 1987; 96:12736.
  • 145
    Tsakiridou E, Bertolini L, De Curtis M, Avanzi G, Pape HC. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995; 15:31107.
  • 146
    Gloor P, Hall G, Coceani F. Differential epileptogenic action of penicillin on cortical and subcortical brain structures. Electroencephalogr Clin Neurophysiol 1967; 23:491.
  • 147
    Gloor P, Fariello RG. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurol Sri 1988; 11:638.
  • 148
    Delgado-EscuetaA, WardAAJr, WoodburyDM, PorterRJ, eds. Busic mechanisms of the epilepsies: molecular and cellular approaches New York : Raven Press, 1986.
  • 149
    Delgado-Esceuta AV, Serratosa JM, Liu Am, et al. Progress in mapping human epilepsy genes. Epilepsia 1994; 35(suppl 1):S2940.
  • 150
    Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genet 1995; 11:2013.
  • 151
    Eksioglu YZ, Scheffer IE, Cardenas P, et al. Periventricular heterotopia: an X-linked dominant epilepsy focus causing aberrant cerebral cortical development. Neuron 1996; 16:7787.
  • 152
    Noebels JL. Targeting epilepsy genes. Neuron 1996; 16:2414.
  • 153
    Angelotti TP, Macdonald RL. Assembly of GABAA receptor sub-units: alBlY2s subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci 1993; 13:142940.
  • 154
    Chen QX, Stelzer A, Kay AR, Wong RKS. GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 1990; 420:20721.
  • 155
    Dingledine R, McBain CB, McNamara JO. Excitatory amino acids in epilepsy. Trends Pharmacol Sci 1992; 11:3348.
  • 156
    Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMD A receptors. Neuron 1994; 12:52940.
  • 157
    Catterall WA. Structure and function of voltage-gated ion channels. Annu Rev Biochem 1995; 64:493553.
  • 158
    Loscher W, Honack D, Taylor CP. Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett 1991; 128:1504.
  • 159
    Upton N. Mechanisms of action of new antiepileptic drugs: rational design and serendipitous findings. Trends Pharmacol Sci 1994; 15:45663.
  • 160
    Mattson RH, Petroff O, Rothman D, Behark K. Vigabatrin: effects on human brain GABA levels shown by nuclear magnetic resonance spectroscopy. Epilepsia 1994; 35(suppl 5):52932.
  • 161
    Rogers SW, Andrews PI, Gahring LC, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994; 265:64851.
  • 162
    Coulter DA, Hugnenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25:58293.
  • 163
    Ferrendelli J. Role of biogenic amines and cyclic nucleotides in seizure mechanisms. Ann Neurol 1984; 16(suppl):98103.
  • 164
    Logothetis J, Harner R, Morrell F, Torres F. The role of estrogens in catamenial exacerbation of epilepsy. Neurology 1959; 9:352.
  • 165
    DeLorenzo RJ. A molecular approach to the calcium signal in brain: relationship to synaptic modulation and seizure discharge. Adv Neurol 1986; 44:43564.
  • 166
    Wong RKS, Prince DA. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res 1978; 159:38590.
  • 167
    Wong RKS, Prince DA, Basbaum M. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci USA 1979; 76: 98690.
  • 168
    Magee JC, Christofi G, Miyakawa H, et al. Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 1995; 74:133541.
  • 169
    Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 1995; 268: 23947.
  • 170
    Griffiths T, Evans MC, Meldrum BS. Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus. Neuroscience 1984; 12:55767.
  • 171
    Choi DW. Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 1987; 7:36979.
  • 172
    Mody I, Stanton PK, Heinemann. Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate granule cells after kindling. J Neurophysiol 1988; 59:103354.
  • 173
    Lothman EW. Functional anatomy: a challenge for the decade of the brain. Epilepsia 1991; 32(suppl 5):S313.
  • 174
    Sutula TP, Cavazos JE, Woodard AR. Long-term structural and functional alterations induced in the hippocampus by kindling: implications for memory dysfunction and the development of epilepsy. Hippocampus 1994; 4:2548.
  • 175
    Johnston D, Brown TH. Giant synaptic potential hypothesis for epileptiform activity. Science 1981; 211:2947.
  • 176
    Dingledine R, Gjerstad L. Reduced inhibition during epileptiform activity in the in vitro hippocampal slide. J Physiol 1980; 305: 297313.
  • 177
    Kapur J, Michelson HB, Buterbaugh GG, Lothman EW. Epilepsy Res 1989; 4:909.
  • 178
    Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat; the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1:4166.
  • 179
    Chamberlain NL, Traub RD, Dingledine R. Role of EPSPs in initiation of spontaneous synchronized burst-firing in rat hippocampal neurons bathed in high potassium. J Neurophysiol 1990; 64:10008.
  • 180
    Gutnick MJ, Prince DA. Thalamocortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus. Science 1972; 176:4246.
  • 181
    Taylor CP, Dudek FE. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 1982; 218:8102.
  • 182
    Traub RD, Wong RKS. Synchronized burst discharge in the disinhibited hippocampal slice. II. Model of the cellular mechanism. J Neurophysiol 1983; 49:45971.
  • 183
    Wong RKS, Traub R. Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in the CA2–CA3 region. J Neurophysiol 1983; 49:44258.
  • 184
    Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 1989; 61:74758.
  • 185
    Stringer JL, Lothman EW. Maximal dentate gyrus activation: characteristics and alterations after repeated seizures. J Neurophysiol 1989; 63:22539.
  • 186
    Piredda S, Gale K. A crucial epileptogenic site in the deep prepiriform cortex. Nature 1985; 317:6235.
  • 187
    Mcintyre DC, Plant JR. Long-lasting changes in the origin of spontaneous discharges from amygdala kindled rats: piriform vs. perirhinal cortex in vitro. Brain Res 1993; 624:26876.
  • 188
    Iadorola MJ, Gale K. Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 1982; 218:123740.
  • 189
    McNamara J. Kindling, an animal model of complex partial epilepsy. Ann Neurol 1984; 16(suppl):726.
  • 190
    Moshé SL, Brown LL, Kubova H, et al. Maturation and segregation of brain networks that modify seizures. Brain Res 1994; 665:1416.
  • 191
    Plum F, Posner JB, Troy B. Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch Neurol 1968; 18:l.
  • 192
    Meldrum BS, Vigoroux RA, Brierley JB. Systemic factors and epileptic brain damage: prolonged seizures in paralyzed artificially ventilated baboons. Arch Neurol 1973; 29:827.
  • 193
    Gaillard WD, Bhatia S, Bookheimer SY, et al. FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology 1995; 45:1236.
  • 194
    Ransom BR. Glial modulation of neural excitability mediated by extracellular pH; a hypothesis. Prog Brain Res 1992; 94:3746.
  • 195
    Traynelis SF, Dingledine R. Role of extracellular space in hyper-osmotic suppression of potassium-induced electrographic seizures. J Neurophysiol 1989; 61:92738.
  • 196
    Hochman DW, Baraban SC, Owens JWM, Schwartzkroin PA. Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 1995; 270:99102.
  • 197
    Lee SH, Magge S, Spencer DD, Sontheimer H, Cornell-Bell AH. Human epileptic astrocytes exhibit increased gap junction coupling. Glia 1995; 15:195202.
  • 198
    Parpura V, Basarsky TA, Liu F, Jeftinija K, Haydon PG. Glutamate-mediated astrocyte-neuron signalling [Letter]. Nature 1994; 369:7447.
  • 199
    Brotchi J. The activated astrocyte-a histochemical approach to the epileptic focus. In: SchoeffenielsE, et al., eds. Dynamic properties of glial cells Oxford : Pergamon Press, 1978: 42933.
  • 200
    Meldrum BS, Corsellis JAN. Epileptogenesis in the immature central nervous system. In: SchwartzkroinPA, WhealHV, eds. Electrophysiology of epilepsy London : Academic Press, 1984: 389412.
  • 201
    Ribak CE, Joubran C, Kesslak W, Bakay RAE. A selective decrease in the number of GABAergic somata occurs in pre-seizing monkeys with alumina gel granuloma. Epilepsy Res 1989; 4:12638.
  • 202
    Babb TL, Pretorius JR, Kupfer WR, Crandall PH. Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 1989; 9:256274.
  • 203
    Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 1985; 5:101622.
  • 204
    Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26:32130.
  • 205
    Cavazos JE, Sutula TP. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 1990; 527:16.
  • 206
    Meldrum BS. Excitotoxicity and epileptic brain damage. Epilepsy Res 1991; 10:5661.
  • 207
    Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994; 35:64054.
  • 208
    Bishop EF. The strychnine spike as a physiological indicator of cortical maturity in the postnatal rabbit. Electroencephalogr Clin Neurophysiol 1950; 2:30915.
  • 209
    Flexner LB, Tyler DB, Gallant U. Biochemical and physiological differentiation during morphogenesis. J Neurophysiol 1950; 6: 42730.
  • 210
    Grossman C. Electro-ontogenesis of cerebral activity. Arch Neurol Psych 1955; 74:186200.
  • 211
    Purpura DP, McMurtry JG, Leonard CF, Malliani A. Evidence for dendritic origin of spikes without depolarizing prepotentials in hippocampal neurons during and after seizure. J Neurophysiol 1966;29:954.
  • 212
    Purpura DP, Prelevic S, Santini M. Postsynaptic potentials and spike variations in the feline hippocampus during postnatal ontogenesis. Exp Neurol 1968; 22:40822.
  • 213
    Kellaway P, Fox BJ. Electroencephalographic diagnosis of cerebral pathology in infants during sleep. I. Rationale, technique, and the characteristics of normal sleep in infants. J Pediatr 1952; 41: 26287.
  • 214
    Hunt WE, Goldring S. Maturation of evoked response of the visual cortex in the postnatal rabbit. Electroencephalogr Clin Neurophysiol 1951; 3:46571.
  • 215
    Moshé SL. The effects of age on the kindling phenomenon. Dev Psychobiol 1981; 14:7581.
  • 216
    Swam JW, Brady RJ, Martin DL. Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuro-science 1989; 28:55161.
  • 217
    Hablitz JJ, Heinemann U. Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex. Dev Brain Res 1987; 36:299303.
  • 218
    Schwartzkroin PA. Epileptogenesis in the immature nervous system. In: SchartzkroinPA, WhealH, eds. Electrophysiology of epilepsy New York : Academic Press, 1984: 389412.
  • 219
    SchwartzkroinPA, MoshéSL, NoebelsJL, SwannJW, eds. Brain development and epilepsy New York : Oxford, 1995.
  • 220
    de la Court A, Breteler MM, Meinardi H, Hauser WA, Hofman A. Prevalence of epilepsy in the elderly: the Rotterdam study. Epilepsia 1996; 37:1417.
  • 221
    Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 1992; 12:484653.