• 1
    Kuhl DE, Engel J Jr, Phelps ME, Selin C. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 1980;8:34860.
  • 2
    Henry TR, Babb TL, Engel J Jr, Mazziotta JC, Phelps ME, Cran-dall PH. Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy. Ann Neurol 1994;36:9257.
  • 3
    Theodore WH, Sato S, Kufta C, Balish MB, Bromfield EB, Lei-derman DB. Temporal lobectomy for uncontrolled seizures: the role of positron emission tomography. Ann Neurol 1992;32:78994.
  • 4
    Engel J Jr, Kuhl DE, Phelps ME, Mazziotta JC. Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann Neurol 1982;12:51017.
  • 5
    Engel J Jr. PET scanning in partial epilepsy. Can J Neurol Sci 1991;18:58892.
  • 6
    Radtke RA, Hanson MW, Hoffman JM, et al. Temporal lobe hypometabolism on PET: predictor of seizure control after temporal lobectomy. Neurology 1993;43:108892.
  • 7
    Arnold S, Schlaug G, Niemann H, et al. Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 1996;46:142230.
  • 8
    Swartz BE, Tomiyasu U, Delgado Escueta AV, Mandelkern M, Khonsari A. Neuroimaging in temporal lobe epilepsy: test sensitivity and relationships to pathology and postoperative outcome. Epilepsia 1992; 33:6234.
  • 9
    Theodore WH, Sato S, Kufta CV, Gaillard WD, Kelley K. FDG-positron emission tomography and invasive EEG: seizure focus detection and surgical outcome. Epilepsia 1997;38:816.
  • 10
    Duncan JS. Imaging and epilepsy. Brain 1997;120:33977.
  • 11
    Chee MW, Moms HH III, Antar MA, et al. Presurgical evaluation of temporal lobe epilepsy using interictal temporal spikes and positron emission tomography. Arch Neurol 1993;50:458.
  • 12
    Rowe CC, Berkovic SF, Austin MC, et al. Visual and quantitative analysis of interictal SPECT with technetium-99m-HMPAO in temporal lobe epilepsy. J Nucl Med 1991;32:168894.
  • 13
    Rowe CC, Berkovic SF, Austin MC, McKay WJ, Bladin PF. Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantitative analysis. Neurology 1991;41:1096103.
  • 14
    Lee BI, Markand ON, Wellman HN, et al. HIPDM-SPECT in patients with medically intractable complex partial seizures. Arch Neurol 1988;45:397402.
  • 15
    Rowe CC, Berkovic SF, Sia ST, et al. Localization of epileptic foci with postictal single photon emission computed tomography. Ann Neurol 1989;26:6608.
  • 16
    Leiderman DB, Balish M, Sato S, et al. Comparison of PET measurements of cerebral blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res 1992;13:1537.
  • 17
    Theodore WH, Gaillard WD, Sato S, Kufta C, Leiderman D. Positron emission tomographic measurement of cerebral blood flow and temporal lobectomy. Ann Neurol 1994;36:2414.
  • 18
    Theodore WH, Balish M, Leiderman D, Bromfield E, Sato S, Herscovitch P. Effect of seizures on cerebral blood flow measured with 15O-H2O and positron emission tomography. Epilepsia 1996;37:796802.
  • 19
    Gaillard WD, Fazilat S, White S, et al. Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Neurology 1995;45:18417.
  • 20
    Fink GR, Pawlik G, Stefan H, Pietrzyk U, Wienhard K, Heiss WD. Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. J Neurol Sci 1996;2834.
  • 21
    Breier JI, Mullani NA, Thomas AB, et al. Effects of duration of epilepsy on the uncoupling of metabolism and blood flow in complex partial seizures. Neurology 1997;48:104753.
  • 22
    Duncan R. Epilepsy, cerebral blood flow, and cerebral metabolic rate. Cerebrovasc Brain Metab Rev 1992;4:10521.
  • 23
    Franck G, Sadzot B, Salmon E, et al. Regional cerebral blood flow and metabolic rates in human focal epilepsy and status epilepticus. Adv Neurol 1986;44:93548.
  • 24
    Newton MR, Berkovic SF, Austin MC, Rowe CC, McKay WJ, Bladin PF. SPECT in the localisation of extratemporal and temporal seizure foci. J Neurol Neurosurg Psychiatry 1995;59:2630.
  • 25
    Sokoloff L. Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc 1981;40:23116.
  • 26
    Ginsberg MD, Chang JY, Kelley RE, et al. Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task. Ann Neurol 1988;23:15260.
  • 27
    Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997; 17:6472.
  • 28
    Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 1983;24:7829.
  • 29
    Ogawa M, Magata Y, Ouchi Y, et al. Scopolamine abolishes cerebral blood flow response to somatosensory stimulation in anesthetized cats: PET study. Brain Res 1994;650:24952.
  • 30
    Maiese K, Holloway HH, Larson DM, Soncrant TT. Effect of acute and chronic arecoline treatment on cerebral metabolism and blood flow in the conscious rat. Bruin Rés 1994;641:6575.
  • 31
    Cudennec A, Bonvento G, Duverger D, Lacombe P, Seylaz J, MacKenzie ET. Effects of dorsal raphe nucleus stimulation on cerebral blood flow and flow-metabolism coupling in the conscious rat. Neuroscience 1993;55:395401.
  • 32
    Ogawa M, Fukuyama H, Ouchi Y, et al. Uncoupling between cortical glucose metabolism and blood flow after ibotenate lesion of the rat basal forebrain: a PET study. Neurosci Lett 1996;204:1936.
  • 33
    Dom T, Witte OW. Separation of different interictal discharge patterns in acute experimentally induced epileptic foci of the rat in vivo. Brain Res 1993;616:3036.
  • 34
    Gass P, Bruehi C, Herdegen T, Kiessling M, Lutzenburg M, Witte OW. Induction of FOS and JUN proteins during focal epilepsy: congruences with and differences to [14C]deoxyglucose metabolism. Brain Res Mol Brain Res 1997;46:17784.
  • 35
    Bruehl C, Kloiber O, Hossman KA, Dorn T, Witte OW. Regional hypometabolism in an acute model of focal epileptic activity in the rat. Eur J Neurosci 1995;7:1927.
  • 36
    Bruehl C, Witte OW. Cellular activity underlying altered brain metabolism during focal epileptic activity. Ann Neurol 1995;38:41420.
  • 37
    Witte OW, Bruehl C, Schlaug G, et al. Dynamic changes of focal hypometabolism in relation to epileptic activity. J Neurol Sci 1994; 124:18897.
  • 38
    Henry TR, Mazziotta JC, Engel J Jr, et al. Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cerebr Blood Flow Metab 1990; 10:74857.
  • 38a
    Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897916.
  • 39
    Kuschinsky W. Coupling of function, metabolism, and blood flow in the brain. Neurosurg Rev 1991;14:1638.
  • 40
    Ouchi Y, Fukuyama H, Ogawa M, et al. Cholinergic projection from the basal forebrain and cerebral glucose metabolism in rats: a dynamic PET study. J Cereb Blood Flow Metab 1996; 16:3441.
  • 41
    Goadsby PJ, Kaube H, Hoskin KL. Nitric oxide synthesis couples cerebral blood flow and metabolism. Brain Res 1992;595:16770.
  • 42
    Wang Q, Kjaer T, Jorgensen MB, et al. Nitric oxide does not act as a mediator coupling cerebral blood flow to neural activity following somatosensory stimuli in rats. Neurol Res 1993;15:336.
  • 43
    Dreier JP. Korner K. Gorner A. et al. Nitric oxide modulates the CBF response to increased extracellular potassium. J Cereb Blood Flow Metab 1995;15:9149.
  • 44
    Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link Trends Neurosci 1993; 16:20614.
  • 45
    Dirnagl U, Niwa K, Lindauer U, Villringer A. Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Physiol 1994;267:296301.
  • 46
    Ayata C, Ma J, Meng W, Huang P, Moskowitz MA. L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Merub 1996;16:53941.
  • 47
    Kaiser MG, During MJ. Combining laser Doppler flowmetry with microdialysis: a novel approach to investigate the coupling of regional cerebral blood flow to neuronal activity. J Neurosci Methods 1995;60:16573.
  • 48
    Baron JC, Lebrun-Grandie P, Collard P, Crouzel C, Mestelan G, Bousser MG. Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography: concise communication. J Nucl Med 1982;23:3919.
  • 49
    Theodore WH, Leiderman D, Gaillard W, Khan I, Reeves P, Lloyd Hontz K. The effect of naloxone on cerebral blood flow and glucose metabolism in patients with complex partial seizures. Epilepsy Res 1993;16:514.
  • 50
    White OW. Afterpotentials of penicillin-induced epileptiform neuronal discharges in the motor cortex of the rat in vivo. Epilepsy Res 1994;38:4355.
  • 51
    Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem 1984;42:111.
  • 52
    Mata M, Fink DJ, Gainer H, et al. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 1980;34:2135.
  • 53
    Magistretti PJ, Pellerin L. Cellular bases of brain energy rnetabolism and their relevance to functional brain imaging—evidénce for a prominent role of astrocytes. Cereb Cortex 1995;5:3016.
  • 54
    Siesjö BK. Brain energy metabolism. New York : John Wiley, 1981.
  • 55
    Pumain R, Heinemann U. Stimulus- and amino acid-induced calcium and potassium changes in rat neocortex. J Neurophysiol 1985;53:116.
  • 56
    Holthoff K, Witte OW. Intrinsic optical signals in rat newortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J Neurosci 1996; 16:27409.
  • 57
    Sitzer M, Knorr U, Seitz RJ. Cerebral hemodynamics during sensorimotor activation in humans. J Appl Physiol 1994;77:280411.
  • 58
    Conrad B, Klingelhofer J. Dynamics of regional cerebral blood flow for various visual stimuli. Exp Brain Res 1989;77:43741.
  • 59
    Narayan SM, Esfahani P, Blood AJ, Sikkens L, Toga AW. Functional increases in cerebral blood volume over somatosensory cortex. J Cereb Blood Flow Metab 1995; 15:75465.
  • 60
    Dietzel J, Heinemann U, Hofmeier G, Lux HD. Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 1980;40:4329.
  • 61
    Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow Science 1987;237:8968.
  • 62
    Hansen TD, Warner DS, Todd MM, Vust LJ. The role of cerebral metabolism in determining the local cerebral blood flow effects of volatile anesthetics: evidence for persistent flow-metabolism coupling. J Cereb Blood Flow Metab 1989;9:3238.
  • 63
    Mies G, Niebuhr I, Hossmann KA. Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques. Stroke 1981;12:5818.
  • 64
    Okuda Y, McDowall DG, Ali MM, Lane JR. Changes in CO, responsiveness and in autoregulation of the cerebral circulation during and after halothane-induced hypotension. J Neurol Neuro-surg Psychiatry 1976;39:22130.
  • 65
    Markwalder TM, Grolimund P, Seiler RW, Roth F, Aaslid R. Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure–a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 1984;4:36872.
  • 66
    Henry TR, Mazziotta JC, Engel J Jr. Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 1993;50:5829.
  • 67
    Schlaug G, Antke C, Holthausen H, et al. Ictal motor signs and interictal regional cerebral hypometabolism. Neurology 1997;49:34150.