• 1
    Testa G, Gloor P. Generalized penicillin epilepsy in the cat: effect of midbrain cooling. Electroencephalogr Clin Neurophysiol 1974; 36: 51724.
  • 2
    Zabara J. Time course of seizure control to brief, repetitive stimuli. Epilepsia 1985; 26: 518.
  • 3
    Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 1992; 33: 100512.
  • 4
    Woodbury DM, Woodbury WJ. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia 1990; 31: (suppl 2):S719.
  • 5
    Woodbury DM, Woodbury WJ. Vagal stimulation reduces the severity of maximal electroshock seizures in intact rats: use of cuff electrode for stimulating and recording. PACE Pacing Clin Electrophysiol 1991; 14: 94107.
  • 6
    Takaya M, Terry WJ, Naritoku DK. Vagus nerve stimulation induces a sustained anticonvulsant effect. Epilepsia 1996; 37: 1116.
  • 7
    Lockard JS, Congdon WC, DuCharme LL. Feasibility and safety of vagal stimulation: the monkey model. Epilepsia 1990; 31: (suppl 2):S206.
  • 8
    Ben-Menachem E, Manon-Espaillat R, Ristanovic R, et al. Vagus nerve stimulation for treatment of partial seizures: 1. a controlled study of effect on seizures. Epilepsia 1994; 35: 61626.
  • 9
    Salinsky MC. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 1995: 45: 22430.
  • 10
    Salinsky MC, Uthman BM, Ristanovic RK, et al. Vagus nerve stimulation for the treatment of medically intractable seizure. Arch Neurol 1996; 53: 117680.
  • 11
    Felder RB, Mifflin SW. Baroreceptor and chemoreceptor afferent processing in the solitary tract nucleus. In: Barraco, IRA, ed. Nucleus of the solitary tract. Boca Raton : CRC Press, 1994: 16983.
  • 12
    Piredda S, Gale K. A crucial epileptogenic site in the deep prepiriform cortex. Nature 1985; 317: 6235.
  • 13
    Bagaev VA, Panteleev SS. Limbic cortical influences to the vagal input neurones of the solitary tract nucleus. Neuro report 1994; 5: 17058.
  • 14
    Williams CI, McGaugh JL. Reversible inactivation of the nucleus of the solitary tract impairs retention performance in an inhibitory avoidance task. Behav Neural Biol 1992; 58: 20410.
  • 15
    Williams CI, McGaugh JL. Reversible lesions of the nucleus of the solitary tract attenuate the memory-modulating effects of posttraining epinephrine. Behav Neurosci 1993; 107: 95562.
  • 16
    Clark KB, Krahl SE, Smith DC, et al. Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol Learn Mem 1995; 63: 2136.
  • 17
    Gale K. Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol 1992; 9: 26477.
  • 18
    Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 1978; 153: 16.
  • 19
    Granata AR, Kitai ST. Intracellular study of nucleus parabrachialis and nucleus tractus solitarii interconnections. Brain Res 1989; 492: 28192.
  • 20
    Granata AR. Ascending and descending convergent inputs to neurons in the nucleus parabrachialis of the rat: an intracellular study. Brain Res 1993; 600: 31521.
  • 21
    Jhamandas JH, Harris KH. Excitatory amino acids may mediate nucleus tractus solitarius input to rat parabrachial neurons. Am J Physiol 1992; R263: 32430.
  • 22
    Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 1990; 31: (suppl 2):S16.
  • 23
    Ter Horst GJ, De Boer P, Luitten PGM, et al. Ascending projections from the solitary tract nucleus to the hypothalamus: a phaseoulus vulgaris lectin tracing study in the rat. Neuroscience 1989; 31: 78597.
  • 24
    Ter Horst GI, Streefland C. Ascending projections of the solitary tract nucleus. In: BarracoIRA, eds. Nucleus of the solitary tract. Boca Raton : CRC Press, 1994:93103.
  • 25
    Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 1990; 293: 54080.
  • 26
    Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 1984; 319: 22959.
  • 27
    Jones BE, Cuello AC. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine neurons. Neuroscience 1989; 31: 3761.
  • 28
    van der Kooy D, Koda LY, McGinty JF, et al. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in the rat. J Comp Neurol 1984; 224: 124.
  • 29
    Otake K, Reis DJ, Ruggiero DA. Afferents to the midline thalamus issue collaterals to the nucleus tractus solitarii: an anatomical basis for thalamic and visceral reflex integration. J Neurosci 1994; 14: 5694707.
  • 30
    Browning RA, Simonton RL, Turner FJ. Antagonism of experimentally induced tonic seizures following a lesion in the midbrain tegmentum. Epilepsia 1981; 22: 595601.
  • 31
    Browning RA, Nelson DK, Mogharreban N, et al. Effect of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy-prone rats. Epilepsia 1985; 26: 17583.
  • 32
    Browning RA. Role of the brain-stem reticular formation in tonicclonic seizures: lesion and pharmacological studies. Fed Proc 1985; 44: 242531.
  • 33
    Miller JW, Hall CM, Holland KD, et al. Identification of a median thalamic system regulating seizures and arousal. Epilepsia 1989; 30: 493500.
  • 34
    Browning RA, Wang C, Faingold CL. Effect of norepinephrine depletion on audiogenic-like seizures elicited by microinfusion of an excitant amino acid into the inferior colliculus of normal rats. Exp Neurol 1991; 112: 2005.
  • 35
    Bengzon J, Brundin P, Kalen P, et al. Host regulation of noradrenaline release from grafts of seizure-suppressant locus coeruleus neurons. Exp Neurol 1991; 111: 4954.
  • 36
    Weiss GK, Lewis J, Jimenez-Rivera C, et al. Antikindling effects of locus coeruleus stimulation: mediation by ascending noradrenergic projections. Exp Neurol 1990; 108: 13640.
  • 37
    Mirsky MAZ, Rossell LA, McPherson RW, et al. Dexmedetomidine decreases seizures threshold in a rat model of experimental generalized epilepsy. Anesthesiology 1994; 81: 142228.
  • 38
    Shouse MN, Langer J, Bier M, et al. The α2-adrenoreceptor agonist clonidine suppresses seizure, whereas the α2-adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens: a comparison of amygdala and pontine microinfusion effects. Epilepsia 1996; 37: 70917.
  • 39
    Libet B, Gleason CA, Wright EW, et al. Suppression of an epileptiform type electrocortical activity in the rat by the stimulation in the vicinity of locus coeruleus. Epilepsia 1977; 18: 45162.
  • 40
    Krahl S, Clark KB, Smith DC, et al. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998; 39: 70914.
  • 41
    Aston-Jones G, Shipley MT, Chouvet G, et al. Afferent regulation of locus coeruleus neurons: anatomy, physiology, and pharmacology. Prog Brain Res 1991; 88: 4775.
  • 42
    Aston-Jones G, Astier B, Ennis M. Inhibition of noradrenergic locus coeruleus neurons by CI adrenergic cells in the rostral ventral medulla. Neuroscience 1992; 48: 37181.
  • 43
    Ennis M, Aston-Jones G. GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 1989; 9: 297381.
  • 44
    Bianchi AL, Grelot L. Role of the NTS in the medullary respiratory network producing respiratory movement. In: BarracoIRA, eds. Nucleus of the solitary tract. Boca Raton : CRC Press, 1994:13545.
  • 45
    Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 1982; 211: 24864.
  • 46
    Terry WJ, Takaya M, Naritoku DK. Regional changes in brain glucose metabolism in rats following anticonvulsant stimulation of the vagus nerve. Epilepsia 1996; 37: 117.
  • 47
    Champagnat J, Denavit-Saubie M, Grant K, et al. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro. J Physiol 1986; 381: 55173.
  • 48
    Feldman PD, Felder RB. Effects of γ-aminobutyric acid and glycine on synaptic excitability of neurones in the solitary tract nucleus. Neuropharmacology 1991; 30: 22536.