SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Willow M, Gonoi T, Catterall WA. Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 1985; 27:54958.
  • 2
    McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 238:72738.
  • 3
    Schwarz JR, Grigat G. Phenytoin and carbamazepine: potential-and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia 1989; 30:28694.
  • 4
    Sayer RJ, Brown AM, Schwindt PC, Crill WE. Calcium currents in acutely isolated human neocortical neurons. J Neurophysiol 1993; 69:1596606.
  • 5
    Kito M, Maehara M, Watanabe K. Antiepileptic drugs: calcium current interaction in cultured human neuroblastoma cells. Seizure 1994; 3:1419.
  • 6
    Granger P, Biton B, Faure C, et al. Modulation of the γ-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol 1995; 47:118996.
  • 7
    Yoshimura R, Yanagihara N, Terao T, Minami K, Abe K, Izumi F. Inhibition by carbamazepine of various ion channels-mediated catecholamine secretion in cultured bovine adrenal medullary cells. Naunyn Schmiedebergs Arch Pharmacol 1995; 352:297303.
  • 8
    Hough CJ, Irwin RP, Gao X-M, Rogawski MA, Chuang D-M. Carbamazepine inhibition of N-methyl-D-aspartate-evoked calcium influx in rat cerebellar granule cells. J Pharmacol Exp Ther 1996; 276:1439.
  • 9
    Morselli PL. Carbamazepine: absorption, distribution, and excretion. In: LevyRH, MattsonRH, MeldrumBS, eds. Antiepileptic drug. New York : Raven Press, 1995: 51528.
  • 10
    Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genet 1995; 11:2013.
  • 11
    Steinlein OK, Magnusson A, Stoodt J, et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 1997; 6:9437.
  • 12
    Weiland S, Witzemann V, Villarroel A, Propping P, Steinlein O. An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 1996; 398:916.
  • 13
    Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human α4β2 nicotinic acetylcholine receptors. J Neurosci 1997; 17:903547.
  • 14
    Scheffer IE, Bhatia KP, Lopes-Cendes I, et al. Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder. Brain 1995; 118:6173.
  • 15
    Hayman M, Scheffer IE, Chinvarun Y, Berlangieri SU, Berkovic SF. Autosomal dominant nocturnal frontal lobe epilepsy: demonstration of focal frontal onset and intrafamilial variation. Neurology 1997; 49:96975.
  • 16
    Picard F, Rudolf G, Sebastianelli R, et al. A clinical study of 21 European families with dominant partial epilepsy. In: BerkovicS, GentonP, HirschE, PicardF, eds. Genetics of focal epilepsie. London : John Libbey, 1999: 11521.
  • 17
    Bertrand D, Cooper E, Valera S, Rungger D, Ballivet M. Electrophysiology of neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes following nuclear injection of genes or cDNA. In: ConnM, ed. Methods in neuroscienc. New York : Academic Press, 1991: 17493.
  • 18
    Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D. Human α4β2 neuronal nicotinic acetylcholine receptor in HEK-293 cells: a patch-clamp study. J Neurosci 1996; 16:788091.
  • 19
    Faigle JW, Feldmann KF. Carbamazepine: chemistry and biotransformation. In: LevyRH, MattsonRH, MeldrumBS, eds. Antiepileptic drug. New York : Raven Press, 1995: 499513.
  • 20
    Ogden DC, Siegelbaum SA, Colquhoun D. Block of acetylcholine-activated ion channels by an uncharged local anaesthetic. Nature 1981; 289:5968.
  • 21
    Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D. Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 1998; 125:75160.
  • 22
    Buisson B, Curtis L, Bertrand D. Neuronal nicotinic acetylcholine receptor and epilepsy. In: BerkovicS, GentonP, HirschE, PicardF, eds. Genetics of focal epilepsie. London : John Libbey, 1999: 187202.
  • 23
    Buisson B, Bertrand D. Open-channel blockers at the human α4β2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 1998; 53:55563.
  • 24
    Levy RH, Shen DD. Valproic acid: absorption, distribution, and excretion. In: LevyRH, MattsonRH, MeldrumBS, eds. Antiepileptic drug. New York : Raven Press, 1995: 60519.
  • 25
    Kuo CC, Chen RS, Lu L, Chen RC. Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Mol Pharmacol 1997; 51:107783.
  • 26
    Matsuki N, Quandt FN, Ten Eick RE, Yeh JZ. Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther 1984; 228:52330.
  • 27
    Tomaselli GF, Marban E, Yellen G. Sodium channels from human brain RNA expressed in Xenopus oocytes: basic electrophysiologic characteristics and their modification by diphenylhydantoin. J Clin Invest 1989; 83:172432.
  • 28
    Wakamori M, Kaneda M, Oyama Y, Akaike N. Effects of chlordiazepoxide, chlorpromazine, diazepam, diphenylhydantoin, flunitrazepam and haloperidol on the voltage-dependent sodium current of isolated mammalian brain neurons. Brain Res 1989; 494:3748.
  • 29
    Van den Berg RJ, Kok P, Voskuyl RA. Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 1993; 93:27987.
  • 30
    Taverna S, Mantegazza M, Franceschetti S, Avanzini G. Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 1998; 32:3048.
  • 31
    Vreugdenhil M, van Veelen CW, van Rijen PC, Lopes da Silva FH, Wadman WJ. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res 1998; 32:30920.
  • 32
    Mutoh K, Dichter MA. Lamotrigine blocks voltage-dependent Na currents in a voltage-dependent manner with a small use-dependent component. Epilepsia 1993; 34:87.
  • 33
    Macdonald RL, Kelly KM. Antiepileptic drug mechanisms of action. Epilepsia 1995; 36:S212.
  • 34
    Kuo CC. A common anticonvulsant binding site for phenytoin, Carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol 1998; 54:71221.
  • 35
    Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. N Engl J Med 1992; 327:76571.
  • 36
    Seino M. A comment on the efficacy of valproate in the treatment of partial seizures. Epilepsia 1994; 35:S1014.
  • 37
    Zona C, Tancredi V, Palma E, Pirrone GC, Avoli M. Potassium currents in rat cortical neurons in culture are enhanced by the antiepileptic drug carbamazepine. Can J Physiol Pharmacol 1990; 68:5457.
  • 38
    Olpe H, Kolb CN, Hausdorf A, Haas HL. 4-Aminopyridine and barium chloride attenuate the anti-epileptic effect of carbamazepine in hippocampal slices. Experientia 1991; 47:2547.
  • 39
    Lancaster JM, Davies JA. Carbamazepine inhibits NMDA-induced depolarizations in cortical wedges prepared from DBA/2 mice. Experientia 1992; 48:7513.
  • 40
    Clark M, Post RM. Carbamazepine, but not caffeine, is highly selective for adenosine A1 binding sites. Eur J Pharmacol 1989; 164:399401.
  • 41
    Okada M, Kiryu K, Kawata Y, et al. Determination of the effects of caffeine and carbamazepine on striatal dopamine release by in vivo microdialysis. Eur J Pharmacol 1997; 321:1818.
  • 42
    Phillips HA, Scheffer IE, Berkovic SF, Hollway GE, Sutherland GR, Mulley JC. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2. Nat Genet 1995; 10:1178.
  • 43
    Whiting PJ, Lindstrom JM. Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J Neurosci 1988; 8:3395404.
  • 44
    Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobiol 1997; 53:199237.
  • 45
    Court J, Clementi F. Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord 1995; 9:614.
  • 46
    Zoli M, Le Novère N, Hill JAJ, Changeux J-P. Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 1995; 15:191239.
  • 47
    Schröder H, Wevers A, Happich E, Schütz U, Moser N. Molecular histochemistry of nicotinic receptors in human brain. In: BeckerR, GiacobiniE, eds. Alzheimer disease: from molecular biology to therap. Boston : Birkhäuser, 1996: 26973.
  • 48
    Agulhon C, Charnay Y, Vallet P, Bertrand D, Malafosse A. Distribution of mRNA for the α4 subunit of the nicotinic acetylcholine receptor in the human fetal brain. Brain Res Mol Brain Res 1998; 58:12331.
  • 49
    Rubin MM, Changeux JP. On the nature of allosteric transitions; implications of nonexclusive ligand binding. J Mol Biol 1966; 21:26574.
  • 50
    Leonard RJ, Labarca CG, Charnet P, Davidson N, Lester HA. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 1988; 242:157881.
  • 51
    Bertrand D, Changeux JP. Nicotinic receptor: an allosteric protein specialized for intercellular communication. Semin Neurosci 1995; 7:7590.
  • 52
    Arias HR. Luminal and non-luminal non-competitive inhibitor binding sites on the nicotinic acetylcholine receptor [Review]. Mol Membr Biol 1996; 13:117.
  • 53
    Clarke PB, Reuben M, El-Bizri H. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br J Pharmacol 1994; 111:695702.
  • 54
    Léna C, Changeux J-P, Mulle C. Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 1993; 13:26808.
  • 55
    Vidal C, Changeux JP. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 1993; 56:2332.
  • 56
    McGehee DS, Heath MJS, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269:16926.
  • 57
    Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 1996; 383:7136.
  • 58
    Marshall DL, Redfern PH, Wonnacott S. Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 1997; 68:15119.
  • 59
    Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997; 20:928.
  • 60
    Li X, Rainnie DG, McCarley RW, Greene RW. Presynaptic nicotinic receptors facilitate monoaminergic transmission. J Neurosci 1998; 18:190412.
  • 61
    Oldani A, Zucconi M, Ferini-Strambi L, Bizzozero D, Smirne S. Autosomal dominant nocturnal frontal lobe epilepsy: electroclinical picture. Epilepsia 1996; 37:96476.
  • 62
    Curró Dossi R, Paré D, Steriade M. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol 1991; 65:393406.
  • 63
    Lavine N, Reuben M, Clarke PBS. A population of nicotinic receptors is associated with thalamocortical afferents in the adult rat: laminal and areal analysis. J Comp Neurol 1997; 380:17590.
  • 64
    Lee KH, McCormick DA. Acetylcholine excites GABAergic neurons of the ferret perigeniculate nucleus through nicotinic receptors. J Neurophysiol 1995; 73:21238.
  • 65
    Mesulam M-M. The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer's disease. Prog Brain Res 1996; 109:28597.
  • 66
    Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 1998; 55:2757.