SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Shorvon S. Status epilepticus: its clinical features and treatment in children and adults. Cambridge , UK : Cambridge University Press, 1994.
  • 2
    Lowenstein DH, Alldredge BK. Status epilepticus. N Engl J Med 1998;338:9706.
  • 3
    Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 1964;10:23348.
  • 4
    Sagar HJ, Oxbury JM. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol 1987;22:33440.
  • 5
    Cendes F, Andermann R, Gloor P, et al. Atrophy of mesial structures in patients with temporal lobe epilepsy: cause or consequence of repeated seizures Ann Neurol 1993;34:795801.
  • 6
    Maytal J, Shinnar S, Moshe SL, Alvarez LA. Low morbidity and mortality of status epilepticus in children. Pediatrics 1989;83:32331.
  • 7
    Berg AT, Shinnar S. Unprovoked seizures in children with febrile seizures: short-term outcome. Neurology 1996;47:5628.
  • 8
    Berg AT, Shinnar S. Do seizures beget seizures? An assessment of the clinical evidence in humans. J Clin Neurophysiol 1997;14:10210.
  • 9
    Van Landingham KE, Heinz ER, Cavazos JE, Lewis DV. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998;43:41326.
  • 10
    Shinnar S. Prolonged febrile seizures and mesial temporal sclerosis. Ann Neurol 1998;43:4112.
  • 11
    Sankar R, Shin DH, Liu H, Mazarati AM, Pereira de Vasconcelos A, Wasterlain CG. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998;18:838293.
  • 12
    Thompson K, Holm AM, Schousboe A, Popper P, Micevych P, Wasterlain CG. Hippocampal stimulation produces neuronal death in the immature brain. Neuroscience 1998;82:33748.
  • 13
    Purpura DP, Gonzalez-Monteagudo O. Acute effects of methoxy-pyridoxine on hippocampal end-blade neurons: an experimental study of “special pathoclisis” in the cerebral cortex. J Neuropathol Exp Neurol 1960;19:42132.
  • 14
    Blennow GJB, Brierley JB, Meldrum BS, Siesjo BK. Epileptic brain damage: the role of systemic factors that modify cerebral energy metabolism. Brain 1978;101:687700.
  • 15
    Nadler JV, Perry BW, Cotman CW. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 1978;271:6767.
  • 16
    Olney JW, Fuller T, de Gubareff T. Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 1979;76:91100.
  • 17
    Ben-Ari Y, Tremblay E, Ottersen OP, Meldrum BS. The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid. Brain Res 1980;191:7997.
  • 18
    Sloviter RS, Damiano BP. Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci Lett 1981;24:27984.
  • 19
    Sperber EF, Haas KZ, Stanton PK, Moshe SL. Resistance of the immature brain to seizure-induced synaptic reorganization. Dev Brain Res 1991;60:8893.
  • 20
    Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 1992;65:22736.
  • 21
    Sloviter RS, Dempster DW. “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res Bull 1985;15:3960.
  • 22
    Teitelbaum JS, Zatorre RJ, Carpenter RS, et al. Neurological sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 1990;322:17817.
  • 23
    Stafstrom CE, Tien RD, Montine TJ, Boustany R-M. Refractory status epilepticus associated with progressive magnetic resonance imaging signal change and hippocampal neuronal loss. J Epilepsy 1996;9:2538.
  • 24
    Maher J, McLachlan RS. Febrile convulsions: is seizure duration the most important predictor of temporal lobe epilepsy Brain 1995;118:15218.
  • 25
    Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1987;235:736.
  • 26
    Sloviter RS. Permanently altered hippocampal structure, excitability and inhibition after experimental status epilepticus in the rat; the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991;1:4166.
  • 27
    Sloviter RS. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994;35:64054.
  • 28
    Tauck D, Nadler J. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 1985;5:101622.
  • 29
    Cronin J, Dudek FE. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats. Brain Res 1988;474:1814.
  • 30
    Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26:32130.
  • 31
    Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991;42:35163.
  • 32
    Wuarin J, Dudek FE. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci 1996;16:443848.
  • 33
    Miles R, Wong RKS. Excitatory synaptic interactions between CA3 neurons in the guinea pig hippocampus. J Physiol 1986;373:397418.
  • 34
    Miles R, Wong RKS. Inhibitory control of local excitatory circuits in the guinea pig hippocampus. J Physiol 1987;388:61129.
  • 35
    Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 1969;25:295330.
  • 36
    Meldrum BS, Vigouroux RA, Brierley JB. Systemic factors and epileptic brain damage. Prolonged seizures in paralysed artificially ventilated baboons. Arch Neurol 1973;29:827.
  • 37
    Olney JW. Excitotoxins, an overview. In: FuxeK, RobertsP, SchwarczR, eds. Excitotoxins. New York : Plenum Press, 1984:8296.
  • 38
    Sloviter RS. Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus 1991;1:3140.
  • 39
    Soriano E, Frotscher M. Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus 1994;4:6570.
  • 40
    Babb TL, Pretorius JK, Kupfer WR, Crandall PH. Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 1989;9:256274.
  • 41
    de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:38795.
  • 42
    Soltesz I, Smetters DK, Mody I. Tonic inhibition originates from synapses close to the soma. Neuron 1995;14:127383.
  • 43
    Buzsáki G, Eidelberg E. Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res 1981;230:34650.
  • 44
    Buzsáki G, Eidelberg E. Direct afferent excitation and long-term potentiation of hippocampal interneurons. J Neurophysiol 1982;48:597607.
  • 45
    Bilkey DK, Goddard GV. Septohippocampal and commissural pathways antagonistically control inhibitory interneurons in the dentate gyrus. Brain Res 1987;405:3205.
  • 46
    Zimmer J, Laurberg S, Sunde N. Neuroanatomical aspects of normal and transplanted hippocampal tissue. In: SeifertW, ed. Neurobiology of the hippocampus. New York : Academic Press, 1983:3964.
  • 47
    Ribak CE, Seress L, Amaral DG. The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 1985;14:83557.
  • 48
    Storm-Mathisen J, Leknes AK, Bore AT, et al. First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 1983;301:51720.
  • 49
    Douglas RM, McNaughton BL, Goddard GV. Commissural inhibition and facilitation of granule cell discharge in fascia dentata. J Comp Neurol 1983;219:28594.
  • 50
    Beckenstein JW, Lothman EW. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 1993;259:97100.
  • 51
    Stringer JL, Lothman EW. Maximal dentate gyrus activation: characteristics and alteration after repeated seizures. J Neurophysiol 1989;62:13643.
  • 52
    Shirasaki Y, Wasterlain CG. Chronic epileptogenicity following focal status epilepticus. Brain Res 1994;655:3344.
  • 53
    Sutula T, He XX, Cavazos J, Scott G. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 1988;239:114750.
  • 54
    Okazaki MM, Evenson DA, Nadler JV. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J Comp Neurol 1995;352:51534.
  • 55
    Armitage LL, Mohapel P, Jenkins EM, Hannesson DK, Corcoran ME. Dissociation between mossy fiber sprouting and rapid kindling with low-frequency stimulation of the amygdala. Brain Res 1998;781:3744.
  • 56
    Elmér E, Kokaia Z, Kokaia M, Lindvall O, McIntyre DC. Mossy fiber sprouting: evidence against a facilitatory role in epileptogenesis. Neuroreport 1997;8:11936.
  • 57
    Longo BM, Mello LEAM. Blockade of pilocarpine- or kainate- induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Lett 1997;226:1636.
  • 58
    Sloviter RS. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett 1992;137:916.
  • 59
    Schwartzkroin PA, Baraban SC, Hochman DW. Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res 1998;32:27585.