SEARCH

SEARCH BY CITATION

References

  • 1
    Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science 1992; 256:10257.
  • 2
    O'Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford : Clarendon Press, 1978.
  • 3
    Ylinen A, Bragin A, Nadazdy Z, et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 1995;15:3046.
  • 4
    Chrobak JJ, Buzsáki G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 1996;16:305666.
  • 5
    Buzsáki G. Hippocampal sharp waves: their origin and significance. Brain Res 1986;398:24252.
  • 6
    Ben-Ari Y, Tremblay E, Ottersen OP, Meldrum BS. The role of epileptic activity in hippocampal and remote cerebral lesions induced by kainic acid. Brain Res 1980;191:7997.
  • 7
    Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985;14:375403.
  • 8
    Sloviter RS. On the relationship between neuropathology and pathophysiology in the epileptic hippocampus of humans and experimental animals. Hippocampus 1994;4:2503.
  • 9
    Corsellis JA, Bruton CJ. Neuropathology of status epilepticus in humans. Adv Neurol 1983;34:12939.
  • 10
    Babb TL. Research of the anatomy and pathology of epileptic tissue. In: LüdersH ed. Epilepsy surgery. New York : Raven Press, 1991:71927.
  • 11
    Schwartzkroin PA. General introduction. In: SchwartzkroinPA, ed. Epilepsy: models, mechanisms, and concepts. Cambridge : Cambridge University Press, 1993: 118.
  • 12
    Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993;34: S3753.
  • 13
    Mathern GW, Babb TL, Pretorius JK, Melendez M, Lévesque MF. The pathophysiologic relationships between lesion pathology, intracranial ictal EEG onsets, and hippocampal neuron losses in temporal lobe epilepsy. Epilepsy Res 1995;2:13347.
  • 14
    Engel J Jr. Excitation and inhibition in epilepsy. Can J Neurol Sci 1996;23:16773.
  • 15
    Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 1996;24:1122.
  • 16
    Wuarin J-P, Dudek FE. Electrographic seizures and new current excitatory circuits in the dentate gyres of hippocampal slices from kainate-treated rats. J Neurosci 1996;16:443848.
  • 17
    Sutula T. Reactive changes in epilepsy: cell death and axon sprouting induced by kindling. Epilepsy Res 1991;10:6270.
  • 18
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 3rd ed. San Diego : Academic Press, 1997.
  • 19
    Buzsáki G, Bickford RG, Ryan LJ, et al. Multisite recordings of brain field potentials and unit activity in freely moving rats. J Neurosci Methods 1989;28:20917.
  • 20
    Babb TL, Kupfer WR, Pretorius JK, Crandal PH, Lévesque MF. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991;42:35163.
  • 21
    Tauck D, Nadler J. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 1985;5:101622.
  • 22
    Mathern GW, Bertram EH, Babb TL, et al. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining fo. N-methyl-D-aspartate, AMPA and GABAA receptors. Neuroscience 1997;77:100319.
  • 23
    Engel J Jr. Current concepts: surgery for seizures. N Engl J Med 1996;334:64752.
  • 24
    Behnke EJ, Wilson CL, Fried I, Maidment NT, Engel J Jr. An intracranial probe for in vivo single neuron recording and micro-dialysis in the human brain. J Neurosci Methods (in press).
  • 25
    Spencer DD, Spencer SS, Matson RH, et al. Access to the posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 1984;15:66771.
  • 26
    Doyle WK, Spencer DD. Anterior temporal lobe resections. In: EngelJJr, PedleyTA, eds. Epilepsy: a comprehensive textbook. Vol 2. New York : Lippincott-Raven, 1998:180718.
  • 27
    Bragin AG, Jando G, Nadazdy Z, Hetke J, Wise K, Buzsáki G. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 1995;15:4760.
  • 28
    Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972;32:28194.
  • 29
    Buzsáki G, Ponomareff LG, Bayardo F, Ruiz R, Gage FH. Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy. Neuroscience 1989;28:52738.
  • 30
    Buzsáki G, Hsu M, Slamka C, Gage FH, Horvath Z. Emergence and propagation of interictal spikes in the subcortically denervated hippocampus. Hippocampus 1991;1:16380.
  • 31
    Huang C-M, White LE Jr. High-frequency components in epileptiform EEG. J Neurosci Methods 1989;30:197201.
  • 32
    Barry E, Sussman N, O'Connor MJ, Harner R. Presurgical electrographic patterns and outcome from anterior temporal lobectomy. Arch Neural 1992;49:217.
  • 33
    So N, Gloor P, Quesney FJ, Jones-Gotman M. Depth electrode investigations in patients with epileptiform abnormalities. Ann Neural 1989;25:42331.
  • 34
    Allen PJ, Fish DR, Smith SJM. Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy. Electroencephalogr Clin Neurophysiol 1992;82:1559.
  • 35
    Fisher WRS, Webber RP, Lesser S, Arroyo S, Uematsu S. High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 1992;9:4418.
  • 36
    Quirk JA, Kendall B, Kingsley DPE, Boyd SG, Pitt MC. EEG features of cortical displasia in children. Neuropediatrics 1993;24:1939.
  • 37
    Raymond AA, Fish DR. EEG features of focal malformations of cortical development. J Clin Neurophysiol 1996;13:495506.
  • 38
    Marescaux C, Micheletti G, Vergness M, Depaulis A, Rumbach L, Warter JM. A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 1984;25:32631.
  • 39
    Vadazs C, Carpi D, Jando G, et al. Genetic threshold hypothesis of neocortical spike-and-wave discharges in the rats: an animal model of petit mal epilepsy. Am J Med Genet 1995;60:5563.
  • 40
    Buzsáki G, Leung L, Vanderwolf CH. Cellular basis of hippocampal EEG in the behaving rat. Brain Res Rev 1983;6:13971.
  • 40
    Engel J Jr. Seizure and epilepsy. Philadelphia : FA Davis, 1989.
  • 41
    Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res 1996;26:14150.
  • 42
    Fox SE, Rank J. Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 1981;41:299313.
  • 43
    Olmstead CE, Best PJ, Mays LE. Neural activity in the dorsal hippocampus during paradoxical sleep, slow wave sleep and waking. Brain Res 1973;60:38191.
  • 44
    Babb TL, Wilson CL, Isokawa-Akesson M. Firing pattern of human limbic neurons during stereoencephalography (SEEG) and clinical temporal lobe seizures. Electroencephalogr Clin Neurophysiol 1987;00:46782.
  • 45
    Andersen P, Bliss TVP, Skrede KK. Unit analysis of hippocampal population spikes. Exp. Brain Res 1971;13:20921.
  • 46
    Ranck JB Jr. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neural 1973;41:461531.
  • 47
    Kandel ER, Spencer WA. Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol 1961;24:24359.
  • 48
    Wong RKS, Prince DA. Afterpotentials generation in hippocampal pyramidal cells. J Neurophysiol 1981;45:8697.
  • 49
    Matsumoto H, Ajmone-Marsan C. Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neural 1964;9:30526.
  • 50
    Dichter M, Spencer WA. Penicilline-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J Neurophysiol 1969;32:66387.
  • 51
    Calvin WH, Ojemann GA, Ward AA. Human cortical neurons in epileptic foci: comparison of inter-ictal firing patterns to those in “epileptic” neurons in animals. Electroencephalogr Clin Neurophysiol 1973;34:33751.
  • 52
    Ward AA Jr. The epileptic neuron: chronic foci in animals and man. In: JasperHH, WardAA, PopeA, eds. Basic mechanisms of the epilepsies. Boston : Little Brown, 1969:63288.
  • 53
    Wyler AR, Ojemann G, Ward AA Jr. Neurons in human epileptic cortex: correlation between unit and EEG activity. Ann Neural 1982;11:3018.
  • 54
    Rayport M. Single neuron studies in human epilepsy. In: SomjenGG, ed. Neurophysiology studied in man. Amsterdam : Excerpta Medica, 1972:1009.
  • 55
    Prince DA. Neurophysiology of epilepsy. Annu Rev Neurosci 1978;1:395415.
  • 56
    Franck JE, Kunkel DD, Baskin DG, Schwartzkroin PA. Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, auto-radiographic, and immunocytochemical observations. J Neurosci 1988;8:19912002.
  • 57
    MacVicar B, Dudek FE. Electronic coupling between granule cells of rat dentate gyrus: physiological and anatomical evidence. J Neurophysiol 1982;47:57992.
  • 58
    Nakajima S, Franck JE, Bilkey D, Schwartzkroin PA. Local circuit synaptic interactions between CA1 pyramidal cells and interneurons in the kainate-lesioned hyperexcitable hippocampus. Hippocampus 1991;1:6778.
  • 59
    Schweitzer JS, Patrylo PR, Dudek FE. Prolonged field bursts in the dentate gyrus: dependence on low calcium, high potassium, and nonsynaptic mechanisms. J Neurophysiol 1992;68:201625.
  • 60
    Buckmaster PS, Dudek FE. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neural 1997;385:385404.
  • 61
    Davenport CJ, Brown WJ, Babb TL. Sprouting of GAB Aergic and mossy fibers axons in the dentate gyrus following intrahippocampal kainate in the rats. Exp Neural 1990;109:18090.
  • 62
    Cronin EP, Dudek FE. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats. Brain Res 1988;474:1814.
  • 63
    Mathern GW, Cifuentes F, Leite JP, Pretorius JK, Babb TL. Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model. Electroencephalogr Clin Neurophysiol 1993;87:32639.
  • 64
    Perez Y, Morin F, Bealieu C, Lacaille J-C. Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats. Eur J Neurosci 1996;8:73648.
  • 65
    de Lanerolle N, Kim JM, Robbins RJ, Spencer DD. Hippocampal interneurons loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:38795.
  • 66
    Houser CR. Morphological changes in the dentate gyrus in human temporal lobe epilepsy. In: RibakCE, GallCM, ModyI, eds. The dentate gyrus and its role in seizures (Epilepsy Res Suppl 7). Amsterdam : Elsevier, 1992:22334.
  • 67
    Dichter MA, Ayala GF. Cellular mechanisms of epilepsy: a status report. Science 1987;237:157237.
  • 68
    Dudek FE, Snow RW, Taylor CP. Role of electrical interactions in synchronization of epileptiform bursts. Adv Neural 1986;44:593617.
  • 69
    Colder BW, Wilson CL, Frysinger RC, Harper RM, Engel J Jr. Interspike intervals during interictal periods in human temporal lobe epilepsy. Brain Res 1996;719:96103.
  • 70
    Colder BW, Wilson CL, Frysinger RC, Chao LC, Harper RM, Engel J Jr. Neuronal synchrony in relation to burst discharge in epileptic human temporal lobes. J Neurophysiol 1996;75:2496508.
  • 71
    Isokawa-Akesson M, Wilson CL, Babb TL. Inhibition in synchronously firing hippocampal neurons. Epilepsy Res 1989;3:23647.
  • 72
    Colder BW, Frysinger RC, Wilson CL, Harper RM, Engel J Jr. Decreased neuronal burst discharge near site of seizure onset in epileptic human temporal lobes. Epilepsia 1996;37:11321.