• 1
    Babb TL, Brown WJ, Pathological findings in epilepsy. In: EngelJJr, ed. Surgical treatment of the epilepsies. New York : Raven Press, 1987:51140.
  • 2
    Mathern GW, Babb TL, Armstrong DL, Hippocampal sclerosis. In: EngelJJr., PedleyTA, eds. Epilepsy: a comprehensive textbook. New York : Raven Press, 1997:13355.
  • 3
    de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD, Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:38795.
  • 4
    Sutula TP, Cascino G, Cavazos J, Parada I, Ramirez L., Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26:32130.
  • 5
    Mathern GW, Kuhlman PA, Mendoza D, Pretorius JK, Human fascia dentata stratum granulosum and hilar areas, and hippocampal neuron counts differ depending on the epileptic syndrome and age at first seizures. J Neuropath Exp Neurol 1997;56:199212.
  • 6
    Bratz E., Ammonshornbefunde bei epileptschen. Arch Psychiat Nervkrankh 1899;31:82036.
  • 7
    Spielmeyer W., Die pathogenese des epileptischen krampfes. Z Ges Neurol Psychiat 1927;109:50120.
  • 8
    Meyer A, Falconer MA, Beck E., Pathological findings in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 1954;17:27685.
  • 9
    Gloor P., Mesial temporal sclerosis: historical background and an overview from a modern perspective. In: LüdersH, ed. Epilepsy surgery. New York : Raven Press, 1991:689703.
  • 10
    Lothman EW, Bertram EH, Epileptogenic effects of status epilepticus. Epilepsia 1993;34(Suppl. 1):S59S70.
  • 11
    Falconer MA, Serafetinides EA, Corsellis JAN, Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 1964;10:23348.
  • 12
    French JA, Williamson PD, Thadani VM, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 1993;34:77480.
  • 13
    Mathern GW, Babb TL, Vickrey BG, Melendez M, Pretorius JK, The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 1995;118:10518.
  • 14
    Maher J, McLachlan RS, Febrile convulsions: is seizure duration the most important predictor of temporal lobe epilepsy Brain 1995;118:15218.
  • 15
    Meldrum BS, Epileptic brain damage: a consequence and a cause of seizures. Neuropathol Appl Neurobiol 1997;23:185202.
  • 16
    VanLandingham KE, Heinz ER, Cavazos JE, Lewis DV, Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998;43:41326.
  • 17
    Nelson KG, Ellenberg JH, Predictors of epilepsy in children who have experienced febrile seizures. N Engl J Med 1976;295:102933.
  • 18
    Verity CM, Ross EM, Golding J., Outcome of childhood status epilepticus and lengthy febrile convulsions: findings of national cohort study. Br Med J 1993;307:2258.
  • 19
    Camfield P, Camfield C, Gordon K, Dooley J., What types of epilepsy are preceded by febrile seizures? A population-based study of children. Dev Med Child Neurol 1994;36:88792.
  • 20
    Camfield PR, Recurrent seizures in the developing brain are not harmful. Epilepsia 1997;38:7357.
  • 21
    Shinnar S, Berg AT, Moshe SL, et al. The risk of seizure recurrence after a first unprovoked afebrile seizure in childhood: an extended follow-up. Pediatrics 1996;98:21625.
  • 22
    Mathern GW, Babb TL, Mischel PS, et al. Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization. Brain 1996;119:96587.
  • 23
    Mathern GW, Pretorius JK, Leite JP, Adelson PD, Hippocampal neuropathology in children with severe epilepsy. In: NehligA, MotteJ, MosheSL, PlouinP, eds. Childhood epilepsies and brain development. London : John Libbey & Co., Ltd., 1999:17185.
  • 24
    Szabö CA, Wyllie E, Siavalas EL, et al. Hippocampal volumetry in children 6 years or younger: assessment of children with and without complex febrile seizures. Epilepsy Res 1999;33:19.
  • 25
    Wasterlain CG, Shirasaka Y., Seizures, brain damage and brain development. Brain Dev 1994;16:27995.
  • 26
    Sankar R, Shin DH, Liu H, Mazarati A, Vasconcelos AP, Wasterlain CG, Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998;18:838293.
  • 27
    Mathern GW, Hippocampal pathophysiology in experimental models. In: KotagalP, LüdersHO, eds. The epilepsies: etiologies and prevention. New York : Academic Press, 1999:14966.
  • 28
    Mathern GW, Bertram EH, Babb TL, et al. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for NMDA, AMPA, and GABA-A receptors. Neuroscience 1997;77:100319.
  • 29
    Sutula T, Cavazos J, Golarai G., Alteration of long-lasting structural and functional effects of kainic acid in the hippocampus by brief treatment with phenobarbital. J Neurosci 1992;12:417387.
  • 30
    Lemos T, Cavalheiro EA, Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 1995;102:4238.
  • 31
    Mathern GW, Price G, Rosales C, Pretorius JK, Lozada A, Mendoza D., Anoxia during kainate status epilepticus shortens behavioral convulsions but generates hippocampal neuron loss and supragranular mossy fiber sprouting. Epilepsy Res 1998;30:13351.
  • 32
    Lorente de Nó R., Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 1934;45:11377.
  • 33
    Bertram EH, Lothman EW, Lenn NJ, The hippocampus in experimental chronic epilepsy: a morphometric analysis. Ann Neurol 1990;27:438.
  • 34
    Bertram EH, Lothman EW, Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the rat. Brain Res 1993;603:2531.
  • 35
    Young D, Dragunow M., Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience 1994;58:24561.
  • 36
    Dunwiddie TV, Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 1980;26:4807.
  • 37
    Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW, Increase of adenosine content in cerebral cortex of the cat during bicuculline induced seizures. Pflugers Arch 1981;387:24551.
  • 38
    Dragunow M., Adenosine receptor antagonism accounts for the seizure-prolonging effects of aminophylline. Pharm Biochem Behav 1990;36:7515.
  • 39
    During MJ, Spencer DD, Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 1992;32:61824.
  • 40
    Coney AM, Marshall JM, Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia. J Physiol 1998;509:50718.
  • 41
    Gross RA, Ferendelli JA, Effects of reserpine, propranolol, and aminophylline on seizure activity and CNS cyclic nucleotides. Ann Neurol 1979;6:296301.
  • 42
    Albertson TE, Stark LG, Joy RM, Bowyer JF, Aminophylline and kindled seizures. Exp Neurol 1983;81:70313.
  • 43
    Ault B, Olney MA, Joyner JL, et al. Pro-convulsant actions of theophylline and caffeine in the hippocampus: implications for the management of temporal lobe epilepsy. Brain Res 1987;426:93102.
  • 44
    Dzhala V, Desfreres L, Melyan Z, Ben-Ari Y, Khazipov R., Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Ann Neurol 1999;46:95102.
  • 45
    Pinard E, Riche D, Puiroud S, Seylaz J., Theophylline reduces cerebral hyperaemia and enhances brain damage induced by seizures. Brain Res 1990;511:3039.
  • 46
    Wechsler RL, Kleiss LM, Kety SS, The effects of intravenously administered aminophylline on cerebral circulation and metabolism in man. J Clin Invest 1950;29:230.
  • 47
    Mabeoku GJ, Gamma-amminobutyric acid and glutamic acid receptors may mediate theophylline-induced seizures in mice. Gen Pharm 1999;32:36572.
  • 48
    Krieger ACC, Takeyasu M., Nonconvulsive status epilepticus in theophylline toxicity. Clin Toxicol 1999;37;99101.
  • 49
    Gilman AF, Goodman LS, Rall TW, Murad F., Goodman and Gilman's the pharmacological basis of therapeutics, 7th ed. New York : Macmillan, 1985.
  • 50
    Franck JE, Schwartzkroin PA, Immature rabbit hippocampus is damaged by systemic but not intraventricular kainic acid. Dev Brain Res 1984;13:21927.
  • 51
    Meldrum BS, Metabolic factors during prolonged seizures and their relation to nerve cell death. In: Delgado-EscuetaAV, WasterlainCG, TreimanDM, PorterRJ, eds. Advances in Neurology, Vol. 34: Status epilepticus. New York : Raven Press, 1983:26175.
  • 52
    Pinard E, Tremblay E, Ben-Ari Y, Seylaz J., Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures. Neuroscience 1984;13:103949.
  • 53
    Makino K, Tanaka T, Yonemasu Y., Regional cerebral blood flow and kainic acid-induced focal limbic seizures in cats. Epilepsy Res 1988;2:2608.
  • 54
    Van Landingham KE, Lothman EW, Self-sustaining limbic status epilepticus. I. Acute and chronic cerebral metabolic studies: limbic hypermetabolism and neocortical hypometabolism. Neurology 1991;41:19429.
  • 55
    Franck JE, Roberts DL, Combined kainate and ischemia produces mesial temporal sclerosis. Neurosci Lett 1990;118:15963.
  • 56
    Rigaud-Monnet A-S, Pinard E, Borredon J, Seylaz J., Blockade of nitric oxide synthesis inhibits hippocampal hyperemia in kainic acid-induced seizures. J Cerebral Blood Flow Metabol 1994;14:58190.
  • 57
    Franck JE, Cell death, plasticity, and epilepsy: insights provided by experimental models of hippocampal sclerosis. In: SchwartzkroinPA, ed. Epilepsy: models, mechanisms, and concepts. Cambridge : University Press, 1993:281303.
  • 58
    Ishige N, Pitts LH, Hashimoto T, et al. Effect of hypoxia on traumatic head injury in rats: Part I. Charges in neurological function, electroencephalograms, and histopathology. Neurosurgery 1987;20:84853.
  • 59
    Jenkins LW, Moszynski K, Lyeth BG, et al. Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res 1989;477:21124.
  • 60
    Clark RSB, Kochanek PM, Dixon CD, et al. Early neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats. J Neurotrauma 1997;14:17989.
  • 61
    Bramlett HM, Green ED, Dietrich WD, Exacerbation of cortical and hippocampal CA1 damage due to posttraumatic hypoxia following moderate fluid-percussion brain injury in rats. J Neurosurg 1999;91:6539.
  • 62
    Margerison JH, Corsellis JAN, Epilepsy and the temporal lobes. Brain 1966;89:499530.