• 1
    Bruton CJ. The neuropathology of temporal lobe epilepsy. In: Institute of Psychiatry Maudsley Monographs 31. Oxford , UK : Oxford University Press, 1988.
  • 2
    Du F, Whetsell WO, Abou-Khalil B, Blumenkopf B, Lothman EW, Schwarcz R. Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 1993;16:22333.
  • 3
    Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT. Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 1993;33:62231.
  • 4
    Margerison JH, Corsellis JAN. Epilepsy and the temporal lobes: a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966;89:499530.
  • 5
    So NK. Depth electrode studies in mesial temporal epilepsy. In: LüdersH, ed. Epilepsy surgery. New York : Raven Press, 1991:37184.
  • 6
    Spencer SS, Spencer DD. Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 1994;35:7217.
  • 7
    Goldring S, Edwards I, Harding GW, Bernardo KL. Results of anterior temporal lobectomy that spares the amygdala in patients with complex partial seizures. J Neurosurg 1992;77:18593.
  • 8
    Siegel AM, Wieser HG, Wichmann W, Yasargil GM. Relationships between MR-imaged total amount of tissue removed, resection scores of specific mediobasal limbic subcompartments and clinical outcome following selective amygdalohippocampectomy. Epilepsy Res 1990;6:5665.
  • 9
    Gale K. Subcortical structures and pathways involved in convulsive seizure generation. J Clin Neurophysiol 1992;9:26477.
  • 10
    Hirayasu Y, Wada JA. N-Methyl-d-aspartate injection into the massa intermedia facilitates development of limbic kindling in rats. Epilepsia 1992;33:96570.
  • 11
    Miller JW, Ferrendelli JA. Characterization of GABAergic seizure regulation in the midline thalamus. Neuropharmacology 1990;29:64955.
  • 12
    Miller JW, Hall CM, Holland KD, Ferrendelli JA. Identification of a median thalamic system regulating seizures and arousal. Epilepsia 1989;30:493500.
  • 13
    Patel S, Millan MH, Meldrum BS. Decrease in excitatory transmission within the lateral habenula and the mediodorsal thalamus protects against limbic seizures in rats. Exp Neurol 1988;101:6374.
  • 14
    Cassidy RM, Gale K. Mediodorsal thalamus plays a critical role in the development of limbic motor seizures. J Neurosci 1998;18:90029.
  • 15
    Aggleton JP, Mishkin M. Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 1984;222:5668.
  • 16
    Dolleman-Van Der Weel MJ, Witter MP. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 1996;364:63750.
  • 17
    Haberly LB, Price JL. Association and commissural fiber systems of the olfactory cortex of the rat: projections originating in the piriform cortex and adjacent areas. J Comp Neurol 1978;178:71140.
  • 18
    Kuroda M, Murakami K, Kishi K, Price JL. Distribution of the piriform cortical terminals to cells in the central segment of the mediodorsal thalamic nucleus of the rat. Brain Res 1992;595:15963.
  • 19
    Russchen FT, Amaral DG, Price JL. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 1987;256:175210.
  • 20
    Su H-S, Bentivoglio M. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol 1990;297:58293.
  • 21
    Turner BH, Herkenham M. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J Comp Neurol 1991;313:295325.
  • 22
    Van Groen T, Wyss JM. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 1990;302:51528.
  • 23
    Wouterlood FG, Saldana E, Witter MP. Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1990;296:179203.
  • 24
    Clifford DB, Olney JW, Maniotis A, Collins RC, Zorumski CF. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987;23:95368.
  • 25
    Handforth A, Treiman DM. Functional mapping of the early stages of status epilepticus: a 14C-2-deoxyglucose study in the lithium pilocarpine rat. Neuroscience 1995;64:105773.
  • 26
    Lothman EW, Collins RC. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 1981;218:299318.
  • 27
    VanLandingham KE, Lothman EW. Self-sustaining limbic status epilepticus. I. Acute and chronic cerebral metabolic studies: limbic hypermetabolism and neocortical hypometabolism. Neurology 1991;41:19429.
  • 28
    Lothman EW, Bertram EH, Bekenstein JW, Perlin JB. Self-sustaining limbic status epilepticus induced by “continuous” hippocampal stimulation: electrographic and behavioral characteristics. Epilepsy Res 1989;3:10719.
  • 29
    Bertram EH, Cornett JF. The evolution of a rat model of chronic spontaneous limbic seizures. Brain Res 1994;661:15762.
  • 30
    Mathern GW, Bertram EH III, Babb TL, et al. In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentate excitatory and inhibitory axon sprouting, and increased staining for N-methyl-d-aspartate, AMPA and GABAA receptors. Neuroscience 1997;77:100319.
  • 31
    Bertram EH. Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 1997;38:95105.
  • 32
    Ben-Ari Y, Tremblay E, Ottersen OP. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 1980;5:515528.
  • 33
    Bertram EH, Zhang DX. Direct excitation of hippocampal CA1 neurons from thalamic stimulation. Neuroscience 1999;92:1526.
  • 34
    Dolleman-van der Weel MJ, Lopes da Silva FH, Witter MP. Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci 1997;17:564050.
  • 35
    Avoli M, Gloor P. Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy. Exp Neurol 1982;76:196217.
  • 36
    Snead OC III. Basic mechanisms of generalized absence seizures. Ann Neurol 1995;37:14657.
  • 37
    Bear J, Fountain NB, Lothman EW. Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats. J Neurophysiol 1996;76:292840.
  • 38
    Lothman EW, Rempe DA, Mangan PS. Changes in excitatory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. J Neurophysiol 1995;74:8418.
  • 39
    Smith BN, Dudek FE. Enhanced population responses in the basolateral amygdala of kainate-treated, epileptic rats in vitro. Neurosci Lett 1997;222:14.
  • 40
    Ryvlin P, Cinotti L, Froment JC. Metabolic patterns associated with nonspecific magnetic resonance imaging abnormalities in temporal lobe epilepsy. Brain 1991;114:236383.
  • 41
    Sperling MR, Gur RC, Alavi A. Subcortical metabolic alterations in partial epilepsy. Epilepsia 1990;31:14555.
  • 42
    DeCarli C, Hatta J, Fazilat S, Fazilat S, Gaillard WD, Theodore WH. Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol 1998;43:415.