• 1
    Cavalheiro EA. The pilocarpine model of epilepsy. Ital J Neurol Sci 1995;16:337.
  • 2
    Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 1989;3:15471.
  • 3
    Cavalheiro EA, Silva DF, Turski WA, Calderazzo-Filho LS, Bortolotto A, Turski L. The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev Brain Res 1987;37:4358.
  • 4
    Priel MR, Ferreira dos Santos N, Cavalheiro EA. Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res 1996;26:11521.
  • 5
    Motte J, Fernandes MJS, Baram TZ, Nehlig A. Spatial and temporal evolution of neuronal activation, stress and injury in lithium-pilocarpine seizures in adult rats. Brain Res 1998;793:6172.
  • 6
    Fernandes MJS, Boyet S, Marescaux C, Nehlig A. Correlation between hypermetabolism and neuronal damage during status epilepticus induced by lithium-pilocarpine in immature and adult rats. J Cereb Blood Flow Metab 1999;19:195209.
  • 7
    Folbergrova J, Ingvar M, Siesjö BK. Metabolic changes in cerebral cortex, hippocampus and cerebellum during sustained bicuculline-induced seizures. J Neurochem 1981;37:122838.
  • 8
    Handforth A, Treiman DM. Functional mapping of the early stages of status epilepticus: a 14C-deoxyglucose study in the lithium-pilocarpine model in rat. Neuroscience 1995;64:105773.
  • 9
    Handforth A, Treiman DM. Functional mapping of the late stages of status epilepticus in the lithium-pilocarpine model in rat: a 14C-deoxyglucose study. Neuroscience 1995;64:107589.
  • 10
    Ingvar M, Folbergrova J, Siesjö BK. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J Cereb Blood Flow Metab 1987;7:1038.
  • 11
    Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897916.
  • 12
    Nehlig A, Pereira de Vasconcelos A, Boyet S. Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. J Neurosci 1988;8:232133.
  • 13
    Gallyas F, Hsu M, Buszaki G. Four modified silver methods for thick sections of formaldehyde-fixed mammalian central nervous tissue: ‘dark’ neurons, perikarya of all neurons, microglial cells and capillaries. J Neurosci Methods 1993;50:15964.
  • 14
    Mello LEAM, Covolan L. Spontaneous seizures preferentially injure interneurons in the pilocarpine model of chronic spontaneous seizures. Epilepsy Res 1996;26:1239.
  • 15
    Tsacopoulos M, Magistretti PJ. Metabolic coupling between neurons and glia. J Neurosci 1996;16:87785.
  • 16
    Magistretti PJ, Pellerin L. The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry 1996;1:44552.
  • 17
    Takahashi S, Driscoll BF, Law MJ, Sokoloff L. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA 1995;92:461620.
  • 18
    Nehlig A, Vergnes M, Boyet S, Marescaux C. Metabolic activity is increased in discrete brain regions before the occurrence of spike-and-wave discharges in weanling rats with genetic absence epilepsy. Dev Brain Res 1998;108:6975.
  • 19
    Pineau N, Charriaut-Marlangue C, Motte J, Nehlig A. Pentylenetetrazol induces cell suffering but not death in the immature rat brain. Dev Brain Res 1999;112:13944.
  • 20
    Chang D, Baram TZ. Status epilepticus results in reversible neuronal injury in infant rat hippocampus: novel use of a marker. Dev Brain Res 1994;77:1336.
  • 21
    Holmes GL. The long-term effects of seizures on the developing brain: clinical and laboratory issues. Brain Dev 1991;13:393409.
  • 22
    Dubé C, Boyet S, Marescaux C, Nehlig A. Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 2000;162:14657.
  • 23
    Bevan MD, Smith AD, Bolam JP. The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neuroscience 1996;75:512.
  • 24
    Calabresi P, de Murtas M, Bernardi G. The neostriatum beyond the motor function: experimental and clinical evidence. Neuroscience 1997;78:3960.
  • 25
    Depaulis A, Vergnes M, Marescaux C. Endogenous control of epilepsy: the nigral inhibitory system. Prog Neurobiol 1994;42:3355.
  • 26
    Deransart C, Vercueil L, Marescaux C, Depaulis A. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 1998;32:21323.
  • 27
    Garant DS, Gale K. Substantia nigra-mediated anticonvulsant actions: role of nigral output pathways. Exp Neurol 1987;97:14359.
  • 28
    Gerfen CR, Staines WA, Arbuthnott GW, Fibiger HC. Crossed connections of the substantia nigra in the rat. J Comp Neurol 1982;207:283303.
  • 29
    Cavalheiro EA, Turski L. Intrastriatal N-methyl-D-aspartate prevents amygdala kindled seizures in rats. Brain Res 1986;377:1736.
  • 30
    Löscher W, Czuczwar SJ, Jäkel R, Schwarz M. Effects of micro-injections of gamma-vinyl GABA or isoniazid into substantia nigra on the development of amygdala kindling in rats. Exp Neurol 1987;95:62238.
  • 31
    Scorza FA, Sanabria ERG, Calderazzo L, Cavalheiro EA. Glucose utilization during interictal intervals in an epilepsy model induced by pilocarpine: a qualitative study. Epilepsia 1999;39:10415.
  • 32
    Henry TR, Mazziotta JC, Engel J. Jr. Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 1993;50:5829.
  • 33
    Semah F, Baulac M, Hasboun D, et al. Is interictal temporal hypometabolism related to mesial temporal sclerosis? A positron emission tomography/magnetic resonance imaging confrontation. Epilepsia 1995;36:44756.
  • 34
    Shin C. Functional neuropathology of temporal lobe epilepsy. In: CascinoGD, JackCR, eds. Neuroimaging in epilepsy: principles and practice. Boston : Butterworth-Heinemann, 1996:6571.
  • 35
    Stefan H, Pawlik G, Bocher-Schwarz HG, et al. Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol 1987;234:37784.