SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Blümcke I, Beck H, Lie AA, Wiestler OD. Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res 1999;36:20523.
  • 2
    Sommer W. Die Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 1880;308:63175.
  • 3
    Blümcke I, Löbach M, Wolf HK, Wiestler OD. Evidence for developmental precursor lesions in epilepsy-associated glioneuronal tumors. Microsc Res Tech 1999;46:538.
  • 4
    Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991;1:4166.
  • 5
    Sutula TP, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26:32130.
  • 6
    Blümcke I, Becker A, Klein C, et al. Temporal lobe epilepsy-associated up-regulation of specific metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol 2000;59:110.
  • 7
    Blümcke I, Beck H, Scheffler B, et al. Altered distribution of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit GluR2(4) and the N-methyl-d-aspartate receptor subunit NMDAR1 in the hippocampus of patients with temporal lobe epilepsy. Acta Neuropathol 1996;92:57687.
  • 8
    Lie AA, Becker A, Behle K, et al. Upregulation of the metabotropic glutamate receptor mGluR4 in epileptic hippocampal neurons with reduced seizure vulnerability. Ann Neurol 2000;47:2635.
  • 9
    Blümcke I, Beck H, Nitsch R, et al. Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon's horn sclerosis. J Neuropathol Exp Neurol 1996;55:32941.
  • 10
    Blümcke I, Beck H, Suter B, et al. An increase of hippocampal calretinin-immunoreactive neurons correlates with early febrile seizures in temporal lobe epilepsy. Acta Neuropathol 1999;97:319.
  • 11
    Blümcke I, Zuschratter W, Schewe JC, et al. Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol 1999;414:43753.
  • 12
    Van Roost D, Solymosi L, Schramm J, van Oosterwyck B, Elger CE. Depth electrode implantation in the length axis of the hippocampus for the presurgical evaluation of medial temporal lobe epilepsy: a computed tomography-based stereotactic insertion technique and its accuracy. Neurosurgery 1998;43:81926.
  • 13
    Behrens E, Zentner J, van Roost D, Hufnagel A, Elger CE, Schramm J. Subdural and depth electrodes in the presurgical evaluation of epilepsy. Acta Neurochir 1994;128:847.
  • 14
    Blümcke I, Behle K, Malitschek B, et al. Immunohistochemical distribution of metabotropic glutamate receptor subtypes mGluR1b, mGluR2/3, mGluR4a and mGluR5 in human hippocampus. Brain Res 1996;736:21726.
  • 15
    Harlow E, Lane P. Antibodies: a laboratory manual. Cold Spring Harbor , NY : Cold Spring Harbor Laboratory Press, 1988.
  • 16
    Amaral DG. A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 1978;182:851914.
  • 17
    Scharfman HE, Schwartzkroin PA. Electrophysiology of morphologically identified mossy cells of the dentate hilus recorded in guinea pig hippocampal slices. J Neurosci 1988;8:381221.
  • 18
    Frotscher M, Seress L, Schwerdtfeger WK, Buhl E. The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp Neurol 1991;312:14563.
  • 19
    Seress L, Mrzljak L. Postnatal development of mossy cells in the human dentate gyrus: a light microscopic Golgi study. Hippocampus 1992;2:12741.
  • 20
    Seress L, Ribak CE. Postnatal developmental and synaptic connections of hilar mossy cells in the hippocampal dentate gyrus of rhesus monkeys. J Comp Neurol 1995;355:93110.
  • 21
    Deller T. The anatomical organization of the rat fascia dentata: new aspects of laminar organization as revealed by anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHAL). Anat Embryol 1998;197:89103.
  • 22
    Scharfman HE, Schwartzkroin PA. Responses of cells of the rat fascia dentata to prolonged stimulation of the perforant path: sensitivity of hilar cells and changes in granule cell excitability. Neuroscience 1990;35:491504.
  • 23
    Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA. Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 1992;2:34962.
  • 24
    Amaral DG, Insausti R, Cowan WM. The commissural connections of the monkey hippocampal formation. J Comp Neurol 1984;224:30736.
  • 25
    Longo BM, Mello LE. Blockade of pilocarpine- or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Lett 1997;226:1636.
  • 26
    Sloviter RS. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1987;235:736.
  • 27
    Scharfman HE, Kunkel DD, Schwartzkroin PA. Synaptic connections of dentate granule cells and hilar neurons: results of paired intracellular recordings and intracellular horseradish peroxidase injections. Neuroscience 1990;37:693707.
  • 28
    Scharfman HE. Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 1994;72:216780.
  • 29
    Scharfman HE. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 1995;74:17994.
  • 30
    Buckmaster PS, Dudek FE. Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J Neurophysiol 1997;77:268596.
  • 31
    Jefferys JG, Traub RD. ‘Dormant’ inhibitory neurons: do they exist and what is their functional impact Epilepsy Res 1998;32:10413.
  • 32
    Kneisler TB, Dingledine R. Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus 1995;5:15164.
  • 33
    Scharfman HE. Electrophysiological diversity of pyramidal-shaped neurons at the granule cell layer/hilus border of the rat dentate gyrus recorded in vitro. Hippocampus 1995;5:287305.
  • 34
    de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:38795.
  • 35
    Robbins RJ, Brines ML, Kim JH, et al. A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol 1991;29:32532.
  • 36
    Mathern GW, Babb TL, Pretorius JK, Leite JP. Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J Neurosci 1995;15:39904004.
  • 37
    Zhu ZQ, Armstrong DL, Hamilton WJ, Grossman RG. Disproportionate loss of CA4 parvalbumin-immunoreactive interneurons in patients with Ammon's horn sclerosis. J Neuropathol Exp Neurol 1997;56:98898.
  • 38
    Scheffler B, Schewe JC, Normann S, Brüstle O, Wiestler OD, Blümcke I. Increased proliferation of Neurol precursor cells in human dentate gyrus of young patients with intractable seizures. Abstr Sac Neurosci 1999;29:10220.
  • 39
    Mathern GW, Babb TL, Mischel PS, et al. Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization. Brain 1996;119:96587.
  • 40
    Sagar HJ, Oxbury JM. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol 1987;22:33440.
  • 41
    O'Connor WM, Masukawa L, Freese A, Sperling MR, French JA, O'Connor MJ. Hippocampal cell distributions in temporal lobe epilepsy: a comparison between patients with and without an early risk factor. Epilepsia 1996;37:4409.