SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Kwiatkowski DJ. Tuberous sclerosis: from tubers to mTOR. Ann Hum Genet 2003;67: 8796.
  • 2
    Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and -2 products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A 2002;99: 135716.
  • 3
    Kenerson HL, Aicher LD, True LD, et al. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res 2002;62: 564550.
  • 4
    El-Hashemite N, Walker V, Zhang H, et al. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 2003;63: 51737.
  • 5
    Tee AR, Manning BD, Roux PP, et al. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signalling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003;13: 125968.
  • 6
    Uhlmann EJ, Li W, Scheidenhelm DK, et al. Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signalling important for astrocyte cell size regulation. Glia 2004;47: 1808.
  • 7
    Uhlmann EJ, Apicelli AJ, Baldwin RL, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2± cells. Oncogene 2002;21: 40509.
  • 8
    Uhlmann EJ, Wong M, Baldwin RL, et al. Astrocyte-specific Tsc1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 2002;52: 28596.
  • 9
    Rosner M, Hengstschlager M. Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem 2004;279: 4870715.
  • 10
    Soucek T, Yeung RS, Hengstschlager M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc Natl Acad Sci U S A 1998;95: 156548.
  • 11
    Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: a review of neurological aspects. Eur J Paediatr Neurol 2002;6: 1523.
  • 12
    Crino PB, Henske EP. New developments in the neurobiology of the tuberous sclerosis complex. Neurology 1999;53: 138490.
  • 13
    Kurosinski P, Götz J. Glial cells under physiologic and pathologic conditions. Arch Neurol 2002;59: 15248.
  • 14
    Steinhäuser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002;447: 22737.
  • 15
    Newman E. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003;26: 53642.
  • 16
    During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 1993;341: 160710.
  • 17
    Sherwin A, Robitaille Y, Quesney F, et al. Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 1998;38: 9203.
  • 18
    Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997;276: 1699702.
  • 19
    Wong M, Ess KC, Uhlmann EJ, et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol 2003;54: 2516.
  • 20
    Kojufi P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004;129: 104354.
  • 21
    Bordey A, Sontheimer H. Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 1998;32: 286303.
  • 22
    Gabriel S, Eilers A, Kivi A, et al. Effects of barium on stimulus induced changes in extracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats. Neurosci Lett 1998;242: 912.
  • 23
    Gabriel S, Kivi A, Kovacs R, et al. Effects of barium on stimulus-induced changes in [K+]o and field potentials in dentate gyrus and area CA1 of human epileptic hippocampus. Neurosci Lett 1998;249: 914.
  • 24
    Hinterkeuser S, Schröder W, Hagar G, et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 2000;12: 208796.
  • 25
    Jauch R, Windmüller O, Lehmann T-N, et al. Effects of barium, furosemide, oubaine and 4,4'-diisothiocyanatostilbene-2,2'disulfonic acid (DIDS) on ionophoretically-induced changes in extracellular potassium concentration in hippocampal slices from rats and from patients with epilepsy. Brain Res 2002;925: 1827.
  • 26
    Janigro D, Gasparini S, D'Ambrosio R, et al. Reduction of K+ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J Neurosci 1997;17: 281324.
  • 27
    Schröder W, Hinterkeuser S, Seifert G, et al. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 2000;41(suppl 6):S1814.
  • 28
    Wong M, Yamada KA. Cyclosporine induces epileptiform activity in an in vitro seizure model. Epilepsia 2000;41: 2716.
  • 29
    Kacharmina JE, Crino PB, Eberwine J. Preparation of cDNA from single cells and subcellular regions. Methods Enzymol 1999;303: 318.
  • 30
    White R, Hua Y, Scheithauer B, et al. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 2001;49: 6778.
  • 31
    Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKB12-rapamycin complex in mammalian cells. J Biol Chem 1995;270: 81522.
  • 32
    Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2, and cdk5. Eur J Biochem 1997;243: 52736.
  • 33
    Chen Q, Catharine Ross A. Retinoic acid regulates cell cycle progression and cell differentiation in human monocytic THP-1 cells. Exp Cell Res 2004;297: 6881.
  • 34
    Vuocolo S, Soprano DR, Soprano KJ. p27/Kip1 mediates retinoic acid-induced suppression of ovarian carcinoma cell growth. J Cell Physiol 2004;199: 23743.
  • 35
    Matsuo T, Seth P, Thiele CJ. Increased expression of p27Kip1 arrests neuroblastoma cell growth. Med Pediatr Oncol 2001;36: 979.
  • 36
    Borriello A, Pietra VD, Criscuolo M, et al. p27Kip1 accumulation is associated with retinoic-induced neuroblastoma differentiation: evidence of a decreased proteasome-dependent degradation. Oncogene 2000;19: 5160.
  • 37
    Higashi K, Fujita A, Inanobe A, et al. An inwardly rectifying (K+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 2001;281: C92231.
  • 38
    Li L, Head V, Timpe LC. Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. Glia 2001;33: 5771.
  • 39
    Poopalasundaram S, Knott C, Shamotienko OG, et al. Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in the adult rat CNS. Glia 2000;30: 36272.
  • 40
    Schröder W, Seifert G, Hüttmann K, et al. AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes on mouse hippocampus. Mol Cell Neurosci 2002;19: 44758.
  • 41
    Stonehouse AH, Pringle JH, Norman RI, et al. Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol 1999;112: 45765.
  • 42
    Thomzig A, Wenzel M, Karschin C, et al. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci 2001;18: 67190.
  • 43
    Jiang K, Shui Q, Xia Z, et al. Changes in the gene and protein expression of KATP channel subunits in the hippocampus of rats subjected to picrotoxin-induced kindling. Mol Brain Res 2004;128: 839.
  • 44
    Hibino H, Fujita A, Iwai K, et al. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 2004;279: 4406573.
  • 45
    Traynelis SF, Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 1988;59: 25976.
  • 46
    McNamara JO. Cellular and molecular basis of epilepsy. J Neurosci 1994;14: 341325.
  • 47
    Neusch C, Weishaupt JH, Bähr M. Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res 2003;311: 1318.
  • 48
    Walz W. Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 2000;36: 291300.
  • 49
    Olsen ML, Sontheimer H. Mislocalization of Kir channels in malignant glia. Glia 2004;46: 6373.
  • 50
    MacFarlane SN, Sontheimer H. Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci 1997;17: 731629.
  • 51
    Ess KC, Uhlmann EJ, Li W, et al. Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia 2004;46: 2840.
  • 52
    Bordey A, Lyons SA, Hablitz JJ, et al. Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 2001;85: 171931.
  • 53
    Bordey A, Sontheimer H. Postnatal development of ionic currents in rat hippocampal astrocytes in situ. J Neurophysiol 1997;78: 46177.
  • 54
    MacFarlane SN, Sontheimer H. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 2000;30: 3948.
  • 55
    Perego C, Vanoni C, Bossi M, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000;75: 107684.
  • 56
    Swanson RA, Liu J, Miller JW, et al. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 1997;17: 93240.
  • 57
    Sontheimer H, Trotter J, Schachner M, et al. Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron 1989;2: 113545.
  • 58
    Kressin K, Kuprijanova E, Jabs R, et al. Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia 1995;15: 17387.
  • 59
    Bringmann A, Biedermann B, Reichenbach A. Expression of potassium channels during postnatal differentiation of rabbit Muller glial cells. Eur J Neurosci 1999;11: 288396.
  • 60
    Kalsi AS, Greenwood K, Wilkin G, et al. Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat 2004;204: 47585.