• 1
    DeLorenzo RJ, Hauser WA, Towne AR, et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology 1996;46: 102935.
  • 2
    Fountain NB. Status epilepticus: risk factors and complications. Epilepsia 2000;41(suppl 2):S2330.
  • 3
    Goodkin HP, Liu X, Holmes GL. Diazepam terminates brief but not prolonged seizures in young, naive rats. Epilepsia 2003;44: 110912.
  • 4
    Bassin S, Smith TL, Bleck TP. Clinical review: status epilepticus. Crit Care 2002;6: 13742.
  • 5
    Waterhouse EJ, Vaughan JK, Barnes TY, et al. Synergistic effect of status epilepticus and ischemic brain injury on mortality. Epilepsy Res 1998;29: 17583.
  • 6
    Tomson T. Mortality in epilepsy. J Neurol 2000;247: 1521.
  • 7
    Lowenstein DH, Alldredge BK. Status epilepticus. N Engl J Med 1998;338: 9706.
  • 8
    Lowenstein DH, Bleck T, Macdonald RL. It's time to revise the definition of status epilepticus. Epilepsia 1999;40: 1202.
  • 9
    Theodore WH, Porter RJ, Albert P, et al. The secondarily generalized tonic-clonic seizure: a videotape analysis. Neurology 1994;44: 14037.
  • 10
    Kennedy MB. Signal-processing machines at the postsynaptic density. Science 2000;290: 7504.
  • 11
    Pereda AE, Bell TD, Chang BH, et al. Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. Proc Natl Acad Sci U S A 1998;95: 132727.
  • 12
    Fink CC, Meyer T. Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr Opin Neurobiol 2002;12: 2939.
  • 13
    Poncer JC, Esteban JA, Malinow R. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II. J Neurosci 2002;22: 440611.
  • 14
    Wang JH, Kelly P. Calcium-calmodulin signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal, fast spiking rat hippocampal CA1 neurons. J Physiol 2001;533: 40722.
  • 15
    Margrie TW, Rostas JA, Sah P. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII. Nat Neurosci 1998;1: 37883.
  • 16
    Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 1999;96: 326974.
  • 17
    Wang RA, Cheng G, Kolaj M, et al. Alpha-subunit of calcium/calmodulin-dependent protein kinase II enhances gamma-aminobutyric acid and inhibitory synaptic responses of rat neurons in vitro. J Neurophysiol 1995;73: 2099106.
  • 18
    Churn SB, DeLorenzo RJ. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation. Brain Res 1998;809: 6876.
  • 19
    Churn SB, Rana A, Lee K, et al. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding. J Neurochem 2002;82: 106576.
  • 20
    Chen HX, Otmakhov N, Strack S, et al. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol 2001;85: 136876.
  • 21
    Lledo PM, Hjelmstad GO, Mukherji S, et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A 1995;92: 111759.
  • 22
    Barria A, Muller D, Derkach V, et al. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 1997;276: 20425.
  • 23
    Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci 2000;23: 7580.
  • 24
    Lisman J. Long-term potentiation: outstanding questions and attempted synthesis. Phil Trans R Soc Lond B Biol Sci 2003;358: 82942.
  • 25
    Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002;3: 17590.
  • 26
    Lisman JE, Zhabotinsky AM. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 2001;31: 191201.
  • 27
    Churn SB. Multifunctional calcium and calmodulin-dependent kinase II in neuronal function and disease. Adv Neuroimmunol 1995;53: 24159.
  • 28
    Churn SB, Taft WC, Billingsley MS, et al. Global forebrain ischemia induces a posttranslational modification of multifunctional calcium- and calmodulin-dependent kinase II. J Neurochem 1992;59: 122132.
  • 29
    Bronstein JM, Farber DB, Micevych PE, et al. Kindling induced changes in calmodulin kinase II immunoreactivity. Brain Res 1990;524: 4953.
  • 30
    Bronstein JM, Micevych P, Popper P, et al. Long-lasting decreases of type II calmodulin kinase expression in kindled rat brains. Brain Res 1992;584: 25760.
  • 31
    Wasterlain CG, Farber DB. Kindling alters the calcium/calmodulin-dependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus. Proc Natl Acad Sci U S A 1984;81: 12537.
  • 32
    Churn SB, Kochan LD, DeLorenzo RJ. Chronic inhibition of Ca(2+)/calmodulin kinase II activity in the pilocarpine model of epilepsy. Brain Res 2000;875: 6677.
  • 33
    Perlin JB, Churn SB, Lothman EW, et al. Loss of type II calcium/calmodulin-dependent kinase activity correlates with stages of development of electrographic seizures in status epilepticus in rat. Epilepsy Res 1992;11: 1118.
  • 34
    Wasterlain CG, Bronstein JM, Morin AM, et al. Translocation and autophosphorylation of brain calmodulin kinase II in status epilepticus. Epilepsy Res Suppl 1992;9: 2318.
  • 35
    Kochan LD, Churn SB, Omojokun O, et al. Status epilepticus results in an N-methyl-d-aspartate receptor-dependent inhibition of Ca2+/calmodulin-dependent kinase II activity in the rat. Neuroscience 2000;95: 73543.
  • 36
    Singleton MW, Holbert WH, 2nd, Ryan ML, et al. Age dependence of pilocarpine-induced status epilepticus and inhibition of CaM kinase II activity in the rat. Brain Res Dev Brain Res 2005;156: 6777.
  • 37
    Churn SB, Franks PD, Thiessen M. Efficacy of topiramate in otherwise refractory status epilepticus in the rat. Epilepsia 2005.
  • 38
    Handforth A, Treiman DM. Functional mapping of the late stages of status epilepticus in the lithium-pilocarpine model in rat: a 14C-2-deoxyglucose study. Neuroscience 1995;64: 107589.
  • 39
    Handforth A, Treiman DM. Functional mapping of the early stages of status epilepticus: a 14C-2-deoxyglucose study in the lithium-pilocarpine model in rat. Neuroscience 1995;64: 105773.
  • 40
    Racine RJ. Modification of seizure activity by electrical stimulation, II: motor seizure. Electroencephalogr Clin Neurophysiol 1972;32: 28194.
  • 41
    Edelman AM, Hunter DD, Hendrickson AE, et al. Subcellular distribution of calcium- and calmodulin-dependent myosin light chain phosphorylating activity in rat cerebral cortex. J Neurosci 1985;5: 260917.
  • 42
    Churn SB, Limbrick D, Sombati S, et al. Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J Neurosci 1995;15: 320014.
  • 43
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72: 24854.
  • 44
    Churn SB, Sombati S, Jakoi ER, et al. Inhibition of calcium/calmodulin kinase II alpha subunit expression results in epileptiform activity in cultured hippocampal neurons. Proc Natl Acad Sci U S A 2000;97: 56049.
  • 45
    Bronstein J, Farber D, Wasterlain C. Decreased calmodulin kinase activity after status epilepticus. Neurochem Res 1988;13: 836.
  • 46
    Churn SB, Rana A, De Blas A, et al. SE-induced inhibition of calmodulin kinase II-dependent phosphorylation of the GABAAα1 receptor subunit (Abstract]. Soc Neurosci 2002;28: 603, abstract.
  • 47
    Havik B, Rokke H, Bardsen K, et al. Bursts of high-frequency stimulation trigger rapid delivery of preexisting alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur J Neurosci 2003;17: 267989.
  • 48
    Fukunaga K, Horikawa K, Shibata S, et al. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. J Neurosci Res 2002;70: 799807.
  • 49
    Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem 1995;270: 611924.
  • 50
    Fukunaga K, Muller D, Miyamoto E. CaM kinase II in long-term potentiation. Neurochem Int 1996;28: 34358.
  • 51
    Fukunaga K. [The role of Ca2+/calmodulin-dependent protein kinase II in the cellular signal transduction]. Nippon Yakurigaku Zasshi 1993;102: 35569.
  • 52
    Griffith LC, Lu CS, Sun XX. CaMKII, an enzyme on the move: regulation of temporospatial localization. Mol Intervent 2003;3: 386403.
  • 53
    Colbran RJ, Brown AM. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 2004;14: 31827.
  • 54
    Withers MD, Kennedy MB, Marder E, et al. Characterization of calcium/calmodulin-dependent protein kinase II activity in the nervous system of the lobster: Panulirus interruptus. Invert Neurosci 1998;3: 33545.
  • 55
    Kennedy MB. Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res Brain Res Rev 1998;26: 24357.
  • 56
    Ouyang Y, Kantor D, Harris KM, et al. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci 1997;17: 541627.
  • 57
    Hudmon A, Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 2002;71: 473510.
  • 58
    Lai Y, Nairn AC, Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 1986;83: 42537.
  • 59
    Molloy SS, Kennedy MB. Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc Natl Acad Sci U S A 1991;88: 475660.
  • 60
    Hanson PI, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 1992;61: 559601.
  • 61
    Butler LS, Silva AJ, Abeliovich A, et al. Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proc Natl Acad Sci U S A 1995;92: 68525.
  • 62
    Kurz JE, Sheets D, Parsons JT, et al. A significant increase in both basal and maximal calcineurin activity in the rat pilocarpine model of status epilepticus. J Neurochem 2001;78: 415.