• 1
    Dudek FE, Patrylo PR, Wuarin JP. Mechanisms of neuronal synchronization during epileptiform activity. In: Delgado-EscuetaAV, WilsonWA, OlsenRW, et al.., eds. Jasper's Basic Mechanisms of the Epilepsies. 3rd ed. Philadelphia : Lippincott Williams & Wilkins, 1999: 699707.
  • 2
    Korn SJ, Giacchino JL, Chamberlin NL, et al.. Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J Neurophysiol 1987;57: 325341.
  • 3
    Traynelis SF, Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 1988;59: 259276.
  • 4
    Jefferys JGR, Haas HL. Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic of transmission. Nature 1982;300: 448450.
  • 5
    Taylor CP, Dudek FE. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 1982;218: 810812.
  • 6
    Konnerth A, Heinemann U, Yaari Y. Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature 1984;307: 6971.
  • 7
    Xiong ZQ, Stringer JL. Prolonged bursts occur in normal calcium in hippocampal slices after raising excitability and blocking synaptic transmission. J Neurophysiol 2001;86: 26252628.
  • 8
    Szente M, Gajda Z, Said Ali K, et al.. Involvement of electrical coupling in the in vivo ictal epileptiform activity induced by 4-aminopyridine in the neocortex. Neuroscience 2002;115: 10671078.
  • 9
    Kohling R, Gladwell SJ, Bracci E, et al.. Prolonged epileptiform bursting induced by 0-Mg2+ in rat hippocampal slices depends on gap junctional coupling. Neuroscience 2001;105: 579587.
  • 10
    Jahromi SS, Wentlandt K, Piran S, et al.. Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J Neurophysiol 2002;88: 18931902.
  • 11
    Coulter DA, DeLorenzo RJ. Basic mechanisms of status epilepticus. In: Delgado-EscuetaAV, WilsonWA, OlsenRW, et al.. eds. Jasper's Basic Mechanisms of the Epilepsies. 3rd ed. Philadelphia : Lippincott Williams & Wilkins, 1999: 725733.
  • 12
    Heinemann U, Lux HD, Gutnick MJ. Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the rat. Exp Brain Res 1977;27: 237243.
  • 13
    Krnjevic K, Morris ME, Reiffenstein RJ. Changes in extracellular Ca2+ and K+ activity accompanying hippocampal discharges. Can J Physiol Pharmacol 1980;58: 579582.
  • 14
    Somjen GG, Giacchino JL. Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. J Neurophysiol 1985;53: 10981108.
  • 15
    Jefferys JGR. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 1995;75: 689723.
  • 16
    Haas HL, Jefferys JGR. Low-calcium field burst discharges of CA1 pyramidal neurons in rat hippocampal slices. J Physiol (Lond) 1984;354: 185201.
  • 17
    Feng Z, Durand DM. Suppression of excitatory synaptic transmission can facilitate low-calcium epileptiform activity in the hippocampus in vivo. Brain Res 2004;1030: 5765.
  • 18
    Feng Z, Durand DM. Decrease in synaptic transmission can reverse the propagation direction of epileptiform activity in hippocampus in vivo. J Neurophysiol 2005;93: 11581164.
  • 19
    Feng Z, Durand DM. Low-calcium epileptiform activity in the hippocampus in vivo. J Neurophysiol 2003;90: 22532260.
  • 20
    Rutecki PA, Lebeda FJ, Johnston D. Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol 1985;54: 13631374.
  • 21
    Yaari Y, Konnerth A, Heinemann U. Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro, II: role of extracellular potassium. J Neurophysiol 1986;56: 424437.
  • 22
    Schweitzer JS, Patrylo PR, Dudek FE. Prolonged field bursts in the dentate gyrus: dependence on low calcium, high potassium, and nonsynaptic mechanisms. J Neurophysiol 1992;68: 20162025.
  • 23
    Alger BE, Nicoll RA. Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 1980;210: 11221124.
  • 24
    Thalmann RH, Ayala GF. A late increase in potassium conductance follows synaptic stimulation of granule neurons of the dentate gyrus. Neurosci Lett 1982;29: 243248.
  • 25
    Nicoll RA, Alger BE. Synaptic excitation may activate a calcium dependent potassium conductance in hippocampal pyramidal cells. Science 1981;212: 957959.
  • 26
    Dudek FE, Yasumura T, Rash JE. “Non-synaptic” mechanisms in seizures and epileptogenesis. Cell Biol Int 1998;22: 793805.
  • 27
    Azzouz R, Jensen MS, Yaari Y. Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol (Lond) 1996;492: 211223.
  • 28
    Bikson M, Baraban SC, Durand DM. Conditions sufficient for nonsynaptic epileptogenesis in the CA1 region of hippocampal slices. J Neurophysiol 2002;87: 6271.
  • 29
    Bikson M, Hahn PJ, Fox JE, et al.. Depolarization block of neurons during maintenance of electrographic seizure. J Neurophysiol 2003;90: 24022408.
  • 30
    Traub RD, Dingledine R. Model of synchronized epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice: role of spontaneous EPSPs in initiation. J Neurophysiol 1990;64: 10091018.
  • 31
    Durand DM. Ictal patterns in experimental models of epilepsy. J Clin Neurophysiol 1993;10: 281291.
  • 32
    Shuai J, Bikson M, Hahn PJ, et al.. Ionic mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution. Biophys J 2003;84: 20992111.
  • 33
    Su H, Alroy G, Kirson ED, et al.. Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 2001;21: 41734182.
  • 34
    Somjen GG, Muller M. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res 2000;885: 102110.
  • 35
    Klitgaard H, Matagne A, Vanneste-Goemaere J, et al.. Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 2002;51: 93107.
  • 36
    Nehlig A, Pereira de Vasconcelos A. The model of pentylenetetrazol-induced status epilepticus in the immature rat: short- and long-term effects. Epilepsy Res 1996;26: 93103.
  • 37
    Lothman EW, Collins RC. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 1981;218: 299318.
  • 38
    Rafiq A, Zhang YF, DeLorenzo RJ, et al.. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slices: a model of status epilepticus. J Neurophysiol 1995;74: 20282042.
  • 39
    Mazarati AM, Wasterlain CG, Sankar R, et al.. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res 1998;801: 251253.
  • 40
    Borris DJ, Bertram EH, Kapur J. Ketamine controls prolonged status epilepticus. Epilepsy Res 2000;42: 117122.
  • 41
    Hamani C, Mello LEAM. Status epilepticus induced by pilocarpine and picrotoxin. Epilepsy Res 1997;28: 7382.
  • 42
    Mangan PS, Bertram EH 3rd. Shortened-duration GABA(A) receptor-mediated synaptic potentials underlie enhanced CA1 excitability in a chronic model of temporal lobe epilepsy. Neuroscience 1997;80: 11011111.