SEARCH

SEARCH BY CITATION

References

  • Alpaydin E. (2004) Introduction to machine learning. The MIT Press, Cambridge.
  • Andrzejak R, Mormann F, Kreuz T, Rieke C, Kraskov A, Elger C, Lehnertz K. (2003) Testing the null hypothesis of the nonexistence of a preseizure state. Phys Rev E Stat Nonlin Soft Matter Phys 67:10901.
  • Andrzejak R, Chicharro D, Elger C, Mormann F. (2009) Seizure prediction: any better than chance? Clin Neurophysiol 120:14651478.
  • Aschenbrenner-Scheibe R, Maiwald T, Winterhalder M, Voss H, Timmer J, Schulze-Bonhage A. (2003) How well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain 126:2616.
  • Bishop C. (2006) Pattern recognition and machine learning. Springer, New York.
  • Cherkassky V, Mulier F. (2007) Learning from data: concepts, theory, and methods. Wiley-Interscience, Hoboken.
  • Chisci L, Mavino A, Perferi G, Sciandrone M, Anile C, Colicchio G, Fuggetta F. (2010) Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans Biomed Eng 57:11241132.
  • Feldwisch-Drentrup H, Schelter B, Jachan M, Nawrath J, Timmer J, Schulze-Bonhage A. (2010) Joining the benefits: combining epileptic seizure prediction methods. Epilepsia 51:15981606.
  • Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D. (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899908.
  • Friedman JH. (1994) An overview of predictive learning and function approximation. In Cherkassky V, Friedman JH, Wechsler H (Eds) From statistics to neural networks: Theory and pattern recognition applications (NATO ASI Series/Computer and Systems Sciences). Springer, Berlin, pp. 161.
  • Guyon I, Elisseeff A. (2003) An introduction to variable and feature selection. JMLR 3:11571182.
  • Harrison M, Osorio I, Frei M, Asuri S, Lai Y. (2005) Correlation dimension and integral do not predict epileptic seizures. Chaos 15:033106.
  • Hjorth B. (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29:306.
  • Li X, Wang Y, Acero A. (2008) Learning query intent from regularized click graphs. Proc. ACM Int. Conf. Inf. Knowl. Manag. ACM Press, Singapore, pp. 339346.
  • Litt B, Echauz J. (2002) Prediction of epileptic seizures. Lancet Neurol 1:2230.
  • Maiwald T, Winterhalder M, Aschenbrenner-Scheibe R, Voss H, Schulze-Bonhage A, Timmer J. (2004) Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Physica D 194:357368.
  • Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, Varela F. (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4:11731176.
  • Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. (1999) Fisher discriminant analysis with kernels. Neural networks for signal processing IX. IEEE, Madison, WI, U.S.A., pp. 4148.
  • Mirowski P, Madhavan D, LeCun Y, Kuzniecky R. (2009) Classification of patterns of EEG synchronization for seizure prediction. Clin Neurophysiol 120:19271940.
  • Moore D, McCabe G. (2005) Introduction to the practice of statistics. W.H. Freeman, New York.
  • Mormann F, Kreuz T, Rieke C, Andrzejak R, Kraskov A, David P, Elger C, Lehnertz K. (2005) On the predictability of epileptic seizures. Clin Neurophysiol 116:569587.
  • Mormann F, Andrzejak R, Elger C, Lehnertz K. (2007) Seizure prediction: the long and winding road. Brain 130:314.
  • Netoff T, Park Y, Parhi K. (2009) Seizure prediction using cost-sensitive support vector machine. Conf. Proc. IEEE Eng. Med. Biol. Soc. IEEE, Minneapolis, MN, U.S.A., pp. 33223325.
  • Nunez P, Srinivasan R. (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York.
  • Osorio I, Frei M, Wilkinson S. (1998) Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 39:615627.
  • Park Y, Neoff T, Parhi K. (2010) Seizure prediction with spectral power of time/space-differential EEG signals using cost-sensitive support vector machine. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. IEEE, Dallas, TX, U.S.A., pp. 54505453.
  • Rothman S, Smyth M, Yang X, Peterson G. (2005) Focal cooling for epilepsy: an alternative therapy that might actually work. Epilepsy Behav 7:214221.
  • Saeys Y, Inza I, Larrañaga P. (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:25072517.
  • Schölkopf B, Burges C, Smola A. (1999) Advances in kernel methods: support vector learning. The MIT press, Cambridge, MA.
  • Shoeb A, Carlson D, Panken E, Timothy D. (2009) A micro support vector machine based seizure detection architecture for embedded medical devices. Conf. Proc. IEEE Eng. Med. Biol. Soc. IEEE, Minneapolis, MN, U.S.A., pp. 42024205.
  • Simon D. (2006) Optimal state estimation: Kalman, H [infinity] and nonlinear approaches. John Wiley and Sons, Hoboken, NJ.
  • Snyder D, Echauz J, Grimes D, Litt B. (2008) The statistics of a practical seizure warning system. J Neural Eng 5:392.
  • Tax D, Duin R. (2004) Support vector data description. Mach Learn 54:4566.
  • Van Rijsbergen C. (1979) Information retrieval. Butterworth-Heinemann, London.
  • Vapnik V. (2000) The nature of statistical learning theory. Springer, New York.
  • Winterhalder M, Maiwald T, Voss H, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A. (2003) The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods. Epilepsy Behav 4:318325.
  • Yang X, Schmidt B, Rode D, Rothman S. (2009) Optical suppression of experimental seizures in rat brain slices. Epilepsia 51:127135.