SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    S. Aljazairi, C. Arias, S. Nogués, Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2 conditions, Plant Biology, 2015, 17, 3
  2. 2
    Jinbo Xiong, Zhili He, Shengjing Shi, Angela Kent, Ye Deng, Liyou Wu, Joy D. Van Nostrand, Jizhong Zhou, Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem, Scientific Reports, 2015, 5, 9316

    CrossRef

  3. 3
    Matthew H. Siebers, Craig R. Yendrek, David Drag, Anna M. Locke, Lorena Rios Acosta, Andrew D. B. Leakey, Elizabeth A. Ainsworth, Carl J. Bernacchi, Donald R. Ort, Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress, Global Change Biology, 2015, 21, 6
  4. 4
    Salvador Aljazairi, Salvador Nogués, The effects of depleted, current and elevated growth [CO2] in wheat are modulated by water availability, Environmental and Experimental Botany, 2015, 112, 55

    CrossRef

  5. 5
    Zhangcai Qin, Qianlai Zhuang, Xudong Zhu, Carbon and nitrogen dynamics in bioenergy ecosystems: 1. Model development, validation and sensitivity analysis, GCB Bioenergy, 2014, 6, 6
  6. 6
    James A. Bunce, Corn Growth Response to Elevated CO<sub>2</sub> Varies with the Amount of Nitrogen Applied, American Journal of Plant Sciences, 2014, 05, 03, 306

    CrossRef

  7. 7
    Yunfeng Peng, Chunjian Li, Felix B. Fritschi, Diurnal dynamics of maize leaf photosynthesis and carbohydrate concentrations in response to differential N availability, Environmental and Experimental Botany, 2014, 99, 18

    CrossRef

  8. 8
    Salvador Aljazairi, Claudia Arias, Elena Sánchez, Gladys Lino, Salvador Nogués, Effects of pre-industrial, current and future [CO2] in traditional and modern wheat genotypes, Journal of Plant Physiology, 2014, 171, 17, 1654

    CrossRef

  9. 9
    Remy Manderscheid, Martin Erbs, Hans-Joachim Weigel, Interactive effects of free-air CO2 enrichment and drought stress on maize growth, European Journal of Agronomy, 2014, 52, 11

    CrossRef

  10. 10
    A. M. Locke, D. R. Ort, Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture, Journal of Experimental Botany, 2014, 65, 22, 6617

    CrossRef

  11. 11
    A. DARIPA, A. BHATIA, R. TOMER, S. D. SINGH, N. JAIN, H. PATHAK, NITROUS OXIDE AND CARBON DIOXIDE EMISSION FROM MAIZE (Zea mays L.) UNDER FERTILISER APPLICATION AND ELEVATED CARBON DIOXIDE IN NORTHWEST INDIA, Experimental Agriculture, 2014, 50, 04, 625

    CrossRef

  12. 12
    Yunfeng Peng, Chunjian Li, Felix B. Fritschi, Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions, Physiologia Plantarum, 2013, 148, 4
  13. 13
    Mir Zaman Hussain, Andy VanLoocke, Matthew H. Siebers, Ursula M. Ruiz-Vera, R. J. Cody Markelz, Andrew D. B. Leakey, Donald R. Ort, Carl J. Bernacchi, Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize, Global Change Biology, 2013, 19, 5
  14. 14
    Tracy E. Twine, Jarod J. Bryant, Katherine T. Richter, Carl J. Bernacchi, Kelly D. McConnaughay, Sherri J. Morris, Andrew D. B. Leakey, Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA, Global Change Biology, 2013, 19, 9
  15. 15
    Sharon B. Gray, Reid S. Strellner, Kannan K. Puthuval, Christopher Ng, Ross E. Shulman, Matthew H. Siebers, Alistair Rogers, Andrew D. B. Leakey, Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress, Functional Plant Biology, 2013, 40, 2, 137

    CrossRef

  16. 16
    Justin M McGrath, David B Lobell, Regional disparities in the CO2fertilization effect and implications for crop yields, Environmental Research Letters, 2013, 8, 1, 014054

    CrossRef

  17. 17
    KaiYan Tan, GuangSheng Zhou, SanXue Ren, Response of leaf dark respiration of winter wheat to changes in CO2 concentration and temperature, Chinese Science Bulletin, 2013, 58, 15, 1795

    CrossRef

  18. 18
    S. M. Driever, J. Kromdijk, Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)?, Journal of Experimental Botany, 2013, 64, 13, 3925

    CrossRef

  19. 19
    Amanda P. de Souza, Rebecca A. Arundale, Frank G. Dohleman, Stephen P. Long, Marcos S. Buckeridge, Will the exceptional productivity of Miscanthus x giganteus increase further under rising atmospheric CO2?, Agricultural and Forest Meteorology, 2013, 171-172, 82

    CrossRef

  20. 20
    David M. Rosenthal, Rebecca A. Slattery, Rebecca E. Miller, Aleel K. Grennan, Timothy R. Cavagnaro, Claude M. Fauquet, Roslyn M. Gleadow, Donald R. Ort, Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels, Global Change Biology, 2012, 18, 8
  21. 21
    Charlotte Decock, Haegeun Chung, Rodney Venterea, Sharon B. Gray, Andrew D.B. Leakey, Johan Six, Elevated CO2 and O3 modify N turnover rates, but not N2O emissions in a soybean agroecosystem, Soil Biology and Biochemistry, 2012, 51, 104

    CrossRef

  22. 22
    Birgit Meibaum, Susanne Riede, Bernd Schröder, Remy Manderscheid, Hans-Joachim Weigel, Gerhard Breves, Elevated CO2and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversityin vitro, Archives of Animal Nutrition, 2012, 66, 6, 473

    CrossRef

  23. 23
    Richard C. Sicher, Jinyoung Y. Barnaby, Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress, Physiologia Plantarum, 2012, 144, 3
  24. 24
    JUSTIN M. McGRATH, DAVID B. LOBELL, An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years, Global Change Biology, 2011, 17, 8
  25. 25
    Gerard W. Wall, Richard L. Garcia, Frank Wechsung, Bruce A. Kimball, Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley, Agriculture, Ecosystems & Environment, 2011, 144, 1, 390

    CrossRef

  26. 26
    Leon Hartwell Allen, Vijaya Gopal Kakani, Joseph C.V. Vu, Kenneth J. Boote, Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum, Journal of Plant Physiology, 2011, 168, 16, 1909

    CrossRef

  27. 27
    R. J. C. Markelz, R. S. Strellner, A. D. B. Leakey, Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize, Journal of Experimental Botany, 2011, 62, 9, 3235

    CrossRef

  28. 28
    P. V. V. Le, P. Kumar, D. T. Drewry, Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States, Proceedings of the National Academy of Sciences, 2011, 108, 37, 15085

    CrossRef

  29. 29
    C. Arena, L. Vitale, A. Virzo De Santo, Influence of irradiance on photosynthesis and PSII photochemical efficiency in maize during short-term exposure at high CO2 concentration, Photosynthetica, 2011, 49, 2, 267

    CrossRef

  30. 30
    Chun-Mei Gong, Juan Bai, Jian-Ming Deng, Gen-Xuan Wang, Xi-Ping Liu, Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability, Plant Ecology, 2011, 212, 4, 675

    CrossRef

  31. 31
    M VALERIO, M B TOMECEK, S LOVELLI, L H ZISKA, Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C3 crop (tomato) and a C4 weed (Amaranthus retroflexus), Weed Research, 2011, 51, 6
  32. 32
    Christopher Stohr, R.G. Darmody, B. Wimmer, I. Krapac, K. Hackley, A. Iranmanesh, Andrew D.B. Leakey, Detecting Carbon Dioxide Emissions in Soybeans by Aerial Thermal Infrared Imagery, Photogrammetric Engineering & Remote Sensing, 2010, 76, 6, 735

    CrossRef

  33. 33
    D. T. Drewry, P. Kumar, S. Long, C. Bernacchi, X.-Z. Liang, M. Sivapalan, Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2, Journal of Geophysical Research: Biogeosciences (2005–2012), 2010, 115, G4
  34. 34
    AMY M. BETZELBERGER, KELLY M. GILLESPIE, JUSTIN M. MCGRATH, ROBERT P. KOESTER, RANDALL L. NELSON, ELIZABETH A. AINSWORTH, Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars, Plant, Cell & Environment, 2010, 33, 9
  35. 35
    L. X. Zhang, H. Qiang, S. Q. Li, X. L. Chen, Effects of enhanced atmospheric ammonia on photosynthetic characteristics of two maize (Zea mays L.) cultivars with various nitrogen supply across long-term growth period and their diurnal change patterns, Photosynthetica, 2010, 48, 3, 389

    CrossRef

  36. 36
    Kelly K. Moran, Julie D. Jastrow, Elevated carbon dioxide does not offset loss of soil carbon from a corn–soybean agroecosystem, Environmental Pollution, 2010, 158, 4, 1088

    CrossRef

  37. 37
    JIAHONG LI, JOHN E. ERICKSON, GARY PERESTA, BERT G. DRAKE, Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment, Global Change Biology, 2010, 16, 1
  38. 38
    Kattarkandi Byjesh, Soora Naresh Kumar, Pramod Kumar Aggarwal, Simulating impacts, potential adaptation and vulnerability of maize to climate change in India, Mitigation and Adaptation Strategies for Global Change, 2010, 15, 5, 413

    CrossRef

  39. 39
    F. G. DOHLEMAN, E. A. HEATON, A. D. B. LEAKEY, S. P. LONG, Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass?, Plant, Cell & Environment, 2009, 32, 11
  40. 40
    A. D. B. Leakey, E. A. Ainsworth, C. J. Bernacchi, A. Rogers, S. P. Long, D. R. Ort, Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE, Journal of Experimental Botany, 2009, 60, 10, 2859

    CrossRef

  41. 41
    A. M. Borland, H. Griffiths, J. Hartwell, J. A. C. Smith, Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands, Journal of Experimental Botany, 2009, 60, 10, 2879

    CrossRef

  42. 42
    ANDREW D. B. LEAKEY, ELIZABETH A. AINSWORTH, STEPHANIE M. BERNARD, R. J. CODY MARKELZ, DONALD R. ORT, SARAH A. PLACELLA, ALISTAIR ROGERS, MELINDA D. SMITH, ERIKA A. SUDDERTH, DAVID J. WESTON, STAN D. WULLSCHLEGER, SHENGHUA YUAN, Gene expression profiling: opening the black box of plant ecosystem responses to global change, Global Change Biology, 2009, 15, 5
  43. 43
    A. D. B. Leakey, F. Xu, K. M. Gillespie, J. M. McGrath, E. A. Ainsworth, D. R. Ort, Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide, Proceedings of the National Academy of Sciences, 2009, 106, 9, 3597

    CrossRef

  44. 44
    Joseph C.V. Vu, Leon H. Allen, Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane, Journal of Plant Physiology, 2009, 166, 2, 107

    CrossRef

  45. 45
    Fulu Tao, Masayuki Yokozawa, Zhao Zhang, Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis, Agricultural and Forest Meteorology, 2009, 149, 5, 831

    CrossRef

  46. 46
    A. D.B. Leakey, Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel, Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1666, 2333

    CrossRef

  47. 47
    REBECCA J. OLIVER, JON W. FINCH, GAIL TAYLOR, Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield, GCB Bioenergy, 2009, 1, 2
  48. 48
    O. Ghannoum, C4 photosynthesis and water stress, Annals of Botany, 2008, 103, 4, 635

    CrossRef

  49. 49
    Z. Z. Xu, G. S. Zhou, Y. L. Wang, G. X. Han, Y. J. Li, Changes in Chlorophyll Fluorescence in Maize Plants with Imposed Rapid Dehydration at Different Leaf Ages, Journal of Plant Growth Regulation, 2008, 27, 1, 83

    CrossRef

  50. 50
    J. Ceusters, A. M. Borland, E. Londers, V. Verdoodt, C. Godts, M. P. De Proft, Diel Shifts in Carboxylation Pathway and Metabolite Dynamics in the CAM Bromeliad Aechmea 'Maya' in Response to Elevated CO2, Annals of Botany, 2008, 102, 3, 389

    CrossRef

  51. 51
    Elizabeth A. Ainsworth, Andrew D. B. Leakey, Donald R. Ort, Stephen P. Long, FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply, New Phytologist, 2008, 179, 1
  52. 52
    Juan Manuel González-Camacho, Jean Claude Mailhol, Françoise Ruget, Impacts locaux attendus de l'augmentation du CO2 dans l'atmosphère sur la productivité de l'eau du maïs dans la Drôme, France, Irrigation and Drainage, 2008, 57, 2
  53. You have free access to this content53
    ELIZABETH A. AINSWORTH, CLAUS BEIER, CARLO CALFAPIETRA, REINHART CEULEMANS, MYLENE DURAND-TARDIF, GRAHAM D. FARQUHAR, DOUGLAS L. GODBOLD, GEORGE R. HENDREY, THOMAS HICKLER, JÖRG KADUK, DAVID F. KARNOSKY, BRUCE A. KIMBALL, CHRISTIAN KÖRNER, MAARTEN KOORNNEEF, TANGUY LAFARGE, ANDREW D. B. LEAKEY, KEITH F. LEWIN, STEPHEN P. LONG, REMY MANDERSCHEID, DAVID L. MCNEIL, TIMOTHY A. MIES, FRANCO MIGLIETTA, JACK A. MORGAN, JOHN NAGY, RICHARD J. NORBY, ROBERT M. NORTON, KEVIN E. PERCY, ALISTAIR ROGERS, JEAN-FRANCOIS SOUSSANA, MARK STITT, HANS-JOACHIM WEIGEL, JEFFREY W. WHITE, Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world, Plant, Cell & Environment, 2008, 31, 9
  54. 54
    JENNIFER CUNNIFF, COLIN P. OSBORNE, BRAD S. RIPLEY, MICHAEL CHARLES, GLYNIS JONES, Response of wild C4 crop progenitors to subambient CO2 highlights a possible role in the origin of agriculture, Global Change Biology, 2008, 14, 3
  55. 55
    Ariane L. Peralta, Michelle M. Wander, Soil organic matter dynamics under soybean exposed to elevated [CO2], Plant and Soil, 2008, 303, 1-2, 69

    CrossRef

  56. 56
    Luca Vitale, Paul Di Tommasi, Carmen Arena, Angelo Fierro, Amalia Virzo De Santo, Vincenzo Magliulo, Effects of water stress on gas exchange of field grown Zea mays L. in Southern Italy: an analysis at canopy and leaf level, Acta Physiologiae Plantarum, 2007, 29, 4, 317

    CrossRef

  57. 57
    ELIZABETH A. AINSWORTH, ALISTAIR ROGERS, The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant, Cell & Environment, 2007, 30, 3
  58. 58
    SOO-HYUNG KIM, RICHARD C. SICHER, HANHONG BAE, DENNIS C. GITZ, JEFFREY T. BAKER, DENNIS J. TIMLIN, VANGIMALLA R. REDDY, Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment, Global Change Biology, 2006, 12, 3
  59. 59
    CARL J. BERNACCHI, ANDREW D. B. LEAKEY, LINDSEY E. HEADY, PATRICK B. MORGAN, FRANK G. DOHLEMAN, JUSTIN M. MCGRATH, KELLY M. GILLESPIE, VICTORIA E. WITTIG, ALISTAIR ROGERS, STEPHEN P. LONG, DONALD R. ORT, Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions, Plant, Cell & Environment, 2006, 29, 11
  60. 60
    ANDREW D. B. LEAKEY, CARL J. BERNACCHI, DONALD R. ORT, STEPHEN P. LONG, Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions, Plant, Cell & Environment, 2006, 29, 9
  61. 61
    Arnold J Bloom, Rising carbon dioxide concentrations and the future of crop production, Journal of the Science of Food and Agriculture, 2006, 86, 9
  62. 62
    DONALD A. PHILLIPS, TAMA C. FOX, JOHAN SIX, Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2, Global Change Biology, 2006, 12, 3
  63. 63
    Joseph C.V. Vu, Leon H. Allen, Russ W. Gesch, Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2, Plant Science, 2006, 171, 1, 123

    CrossRef

  64. 64
    J. A. Bunce, Seed yield of soybeans with daytime or continuous elevation of carbon dioxide under field conditions, Photosynthetica, 2005, 43, 3, 435

    CrossRef

  65. 65
    Patrick B. Morgan, Germán A. Bollero, Randall L. Nelson, Frank G. Dohleman, Stephen P. Long, Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation, Global Change Biology, 2005, 11, 10
  66. 66
    Elizabeth A. Ainsworth, Stephen P. Long, What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytologist, 2005, 165, 2
  67. 67
    J. A. Bunce, What is the usual internal carbon dioxide concentration in C4 species under midday field conditions?, Photosynthetica, 2005, 43, 4, 603

    CrossRef

  68. 68
    S. Miyazaki, M. Fredricksen, K.C. Hollis, V. Poroyko, D. Shepley, D.W. Galbraith, S.P. Long, H.J. Bohnert, Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3, Field Crops Research, 2004, 90, 1, 47

    CrossRef

  69. 69
    An Evaluation of the Impact of Rising Carbon Dioxide and Climatic Change on Weed Biology: From the Cell to the Plant,
  70. 70
    Rowan F. Sage, Murilo Melo Peixoto, Tammy L. Sage, Photosynthesis in Sugarcane,
  71. 71
    S. Seneweera, R. M. Norton, Plant Responses to Increased Carbon Dioxide,