Get access

MULTIPLE FtsZ RING FORMATION AND REDUPLICATED CHLOROPLAST DNA IN NANNOCHLORIS BACILLARIS (CHLOROPHYTA, TREBOUXIOPHYCEAE) UNDER PHOSPHATE-ENRICHED CULTURE1

Authors

  • Nobuko Sumiya,

    1. Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
    Search for more papers by this author
  • Aiko Hirata,

    1. Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
    Search for more papers by this author
  • Shigeyuki Kawano

    1. Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
    Search for more papers by this author

  • 1

    Received 31 October 2007. Accepted 25 April 2008.

Abstract

We examined the effects of phosphate enrichment on chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann. The doubling time of cells was similar in phosphate-limited (no β-glycerophosphate) and phosphate-enriched (2 mM β-glycerophosphate) media. The lengths of cells and chloroplasts were similar, regardless of phosphate concentration. The relationship between the ring formation of the prokaryote-derived chloroplast division protein FtsZ and phosphate concentration was examined using indirect fluorescent antibody staining. The number of FtsZ rings increased as the phosphate concentration of the medium increased. Multiple FtsZ rings were formed in cells in phosphate-enriched medium; up to six FtsZ rings per chloroplast were observed. The number of FtsZ rings increased as the chloroplast grew. The FtsZ ring located near the center of the chloroplast had the strongest fluorescence. The FtsZ ring at the relative center of all FtsZ rings was used for division. Plastid division rings did not multiply in phosphate-enriched culture. The chloroplast DNA content was 2.3 times greater in phosphate-enriched than in phosphate-limited culture and decreased in cells cultured in phosphate-enriched medium containing 5-fluorodeoxyuridine (FdUr). In the presence of FdUr, only one FtsZ ring formed, even under phosphate enrichment. This finding suggests that excessive chloroplast DNA replication induces multiple FtsZ ring formation in phosphate-enriched culture. We propose a multiple FtsZ ring formation model under phosphate enrichment.

Ancillary