MICROSENSOR MEASUREMENTS OF THE EXTERNAL AND INTERNAL MICROENVIRONMENT OF FUCUS VESICULOSUS (PHAEOPHYCEAE)

Authors


  • Received 26 June 2009. Accepted 19 April 2010.

Abstract

We investigated the O2, pH, and irradiance microenvironment in and around the tissue of the brown alga Fucus vesiculosus L. using microsensors. Microsensors are ideal tools for gaining new insights into what limits and controls macroalgal activity and growth at very fine spatial (<100 μm) and temporal (seconds) scales. This first microsensor investigation of a fucoid macroalga revealed differences in the microenvironment and metabolic activities at the level of different cell layers and thallus structures. F. vesiculosus responded quickly to rapid shifts in irradiance resulting in a highly dynamic microenvironment around and within its thallus. In combination with detailed morphological studies and molecular approaches, microsensors offer a promising toolbox to quantitatively describe structural and functional adaptations of macroalgae to environmental conditions, such as flow and light climate, as well as their physiological responses to environmental stressors.

Ancillary