Get access

ANTIOXIDANT ENZYME RESPONSE AND REACTIVE OXYGEN SPECIES PRODUCTION IN MARINE RAPHIDOPHYTES

Authors


  • Received 7 July 2009. Accepted 19 April 2010.

Abstract

Raphidophytes (class Raphidophyceae) produce high levels of reactive oxygen species (ROS), yet little is known regarding cellular scavenging mechanisms needed for protection against these radicals. Enzymatic activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in conjunction with the production of superoxide (O2•−) and hydrogen peroxide (H2O2) in batch cultures of five different raphidophytes species during early exponential, late-exponential, and stationary growth phases. The greatest concentrations of O2•− per cell were detected during exponential growth with reduced levels in stationary phases in raphidophytes Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara, Chattonella marina (Subrahman.) Y. Hara et Chihara, and Chattonella antiqua (Hada) Ono (strain 18). Decreasing trends from exponential to stationary phases for SOD activity and H2O2 per cell were observed in all species tested. Significant correlations between O2•− per cell and SOD activity per cell over growth phase were only observed in three raphidophytes (Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua strain 18), likely due to different cellular locations of externally released O2•− radicals and intracellular SOD enzymes measured in this study. CAT activity was greatest at early exponential phase for several raphidophytes, but correlations between H2O2 per cell and CAT activity per cell were only observed for Fibrocapsa japonica Toriumi et Takano, Chattonella antiqua (strain 18), and Chattonella subsalsa Biecheler. Our results suggest that SOD and CAT play important protective roles against ROS during exponential growth of several raphidophytes, while other antioxidant pathways may play a larger role for scavenging ROS during later growth.

Ancillary