SEARCH

SEARCH BY CITATION

References

  • Andresen, B. 1984. Finite-time thermodynamics. Ph.D. thesis, University of Copenhagen , Copenhagen , Denmark .
  • Ayres, R.U. and U.E. Simonis, eds. 1994. Industrial Metabolism. Restructuring for Sustainable Development. New York : United Nations University Press.
  • Ayres, R.U., L.W. Ayres, und K. Martinás. 1996. Eco-thermodynamics: Exergy and life cycle analysis. INSEAD R&D working papers 96/04/EPS. Fontainebleau , France : INSEAD.
  • Ayres, R.U. and K. Martinás. 1994. Waste potential entropy: The ultimate ecotoxic? INSEAD R&D working papers 94/36/EPS. Fontainebleau , France : INSEAD.
  • Ayres, R. U.. 1998. Eco-thermodynamics: Economics and the second law. Ecological Economics 26(2): 189210.
  • Ayres, R.U., L.W. Ayres, and A. Masini. 2006. An application of exergy accounting to five basic metal industries. In Sustainable Metals Management, edited by A.von Gleich, R.U.Ayres and S.Gößling-Reisemann. Heidelberg , Germany : Springer.
  • Baumgärtner, S. and J. de Swaan Arons. 2003. Necessity and inefficiency in the generation of waste. Journal of Industrial Ecology 7(2): 113123.
  • Bejan, A. 1996. Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. In Advanced Topics in Mechanical Engineering Series, vol. 2. Boca Raton , FL : CRC Press.
  • Connelly, L. and C.P. Koshland. 2001a. Exergy and industrial ecology—Part 1: An exergy-based definition of consumption and a thermodynamic interpretation of ecosystem evolution. Exergy 1(3): 146165.
  • Connelly, L. and C.P. Koshland. 2001b. Exergy and industrial ecology—Part 2: A non-dimensional analysis of means to reduce resource depletion. Exergy 1(4): 234255.
  • Cornelissen, R. L. 1997. Thermodynamics and sustainable development—the use of exergy analysis and the reduction of irreversibility. Ph.D. thesis, University of Twente , Twente , the Netherlands .
  • Cornelissen, R.L. and G.G. Hirs. 2002. The value of exergetic life cycle assessment besides LCA. Energy Conversion and Management 43(9): 14171424.
  • Dewulf, J., H. van Langenhove, and J. Dirckx. 2001. Exergy analysis in the assessment of the sustainability of waste gas treatment systems. The Science of the Total Environment 273(1): 4152.
  • Dewulf, J. and H. van Langenhove. 2002a. Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environmental Science and Pollution Research International 9(4): 267273.
  • Dewulf, J. and H. van Langenhove. 2002b. Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis. Environmental Science & Technology 36(5): 11301135.
  • Dincer, I. and Y.A. Cengel. 2001. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3(3): 116149.
  • Finnveden, G. and P. Östlund. 1997. Exergies of natural resources in life-cycle assessment and other applications. Energy 22(9): 923932.
  • Georgescu-Roegen, N. 1971. The Entropy Law and the Economic Process. Cambridge , MA : Harvard University Press.
  • Goedkoop, M. and R. Spriensma. 2001. The Eco-Indicator 99—A Damage Oriented Method for Life Cycle Assessment. Amersfort , the Netherlands : Pré Consultants.
  • Gößling, S. 2001. Entropy production as a measure for resource use—method development and application to metallurgical processes. Ph.D. thesis, University of Hamburg , Hamburg , Germany . http://www.sub.uni-hamburg.de/opus/volltexte/2004/1182.
  • Guinée, J. B., ed. 2002. Handbook on Life Cycle Assessment—Operational Guide to the ISO Standards. Dordrecht , the Netherlands : Kluwer Academic Publishers.
  • Ishida, M., ed. 2002. Selected papers from the proceedings of efficiency, costs, optimization, simulation and environmental aspects of energy systems (ECOS'99). Energy Conversion and Management 43(special issue).
  • Kondepudi, D. and I. Prigogine. 1998. Modern Thermodynamics: From Heat Engines to Dissipative Structures. Chichester , UK : John Wiley & Sons.
  • Matthews, E., C. Amann, S. Bringezu, M. Fischer-Kowalski, W. Hüttler, R. Kleijn, Y. Moriguchi, C. Ottke, E. Rodenburg, D. Rogich, H. Schandl, H. Schütz, E. Van Der Voet, and H. Weisz. 2000. The Weight of Nations. Material Outflows from Industrial Economies. Washington , DC : World Resources Institute.
  • Merriam-Webster Online Dictionary. 2004. “Consumption” http://www.merriamwebster.com. Accessed 29 March 2006.
  • Müller-Wenk, R. 1998. Depletion of abiotic resources weighted on the base of “virtual” impacts of lower grade deposits used in future. Discussion paper 57, Institut für Wirtschaft und Ökologie (IWÖ). St. Gallen , Switzerland : University of St. Gallen.
  • Rant, Z. 1956. Exergie, ein neues Wort für technische Arbeitsfähigkeit [Exergy, a new word for technical available work]. Forschung auf dem Gebiet des Ingenieurwesens 22: 3637.
  • Ritthoff, M., H. Rohn, and C. Liedtke. 2002. Calculating MIPS: Resource productivity of products and services. Wuppertal spezial 27. Wuppertal , Germany : Wuppertal-Institute for Climate, Environment and Energy.
  • Seager, T. and T. Theis. 2002. A uniform definition and quantitative basis for industrial ecology. Journal of Cleaner Production 10(3): 225236.
  • Stewart, M. and B. P. Weidema. 2005. A consistent framework for assessing the impacts from resource use – a focus on resource functionality. The International Journal of Life Cycle Assessment 10(4): 240247.
  • Szargut, J. and D.R. Morris. 1987. Cumulative exergy consumption and cumulative degree of perfection of chemical processes. International Journal of Energy Research 11(2): 245261.
  • Szargut, J., D.R. Morris, and F.R. Steward. 1988. Exergy Analysis of Thermal, Chemical and Metallurgical Processes. New York : Hemisphere Publishing Corp.
  • Szargut, J. 1999. Exergy in the thermal systems analysis. In Thermodynamic Optimization of Complex Energy Systems, edited by A.Bejan and E.Mamut. Boston : Kluwer Academic Publishers.
  • Szargut, J., A. Ziebik, and W. Stanek. 2002. Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. In Selected Papers from the Proceedings of Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems (ECOS'99), edited by M.Ishida. Energy Conversion and Management 43(special issue).
  • Van der Voet, E., L. van Oers, S. de Bruyn, and M. Sevenster. 2008. Wachstum ohne Umweltverbrauch? Entkopplung und Dematerialisierung [Growth without environmental consumption? - Decoupling and Dematerialisation]. In Industrial Ecology. Erfolgreiche Wege zu nachhaltigen industriellen Systemen [Industrial Ecology- Successful paths to sustainable industrial systems]. Edited by A.von Gleich and S.Gößling-Reisemann. Wiesbaden , Germany : Teubner.
  • Van der Voet, E., L. van Oers, and Nikolic. 2004. Dematerialization: not just a matter of weight. Journal of Industrial Ecology 8(4): 121138.
  • von Gleich, A. 2001. Nachhaltigkeitsstrategien, Nachhaltigkeitsindikatoren und erste praktische Schritte—Ergebnisse aus dem Projekt “Nachhaltige Metallwirtschaft Hamburg”[Sustainability strategies, sustainability indicators and first practical steps —results from the project “Sustainable metals management Hamburg”]. In Nachhaltiges Management Metallischer Stoffströme [Sustainable Management of Metallic Material Flows], edited by W.Kuckshinrichs and K.-L.Hüttner. Schriften des Forschungszentrums Jülich, Reihe Umwelt, Band 31. Jülich , Germany : Forschungszentrum Jülich.
  • von Gleich, A. 2006. Outlines of a sustainable metals industry. In Sustainable Metals Management. Securing our Future - Steps towards a Closed Loop Economy (pp. 3-39), edited by A.von Gleich, R.U.Ayres, and S.Gößling-Reisemann (Eds.). Dordrecht , The Netherlands : Springer.
  • Wackernagel, M. and W. E. Rees. 1998. Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island , BC , Canada : New Society Publishers.