SEARCH

SEARCH BY CITATION

References

  • Abrahamson, J. 1973. The surface energies of graphite. Carbon 11(4): 337362.
  • An, L. and J. Liu. 2005. Controlling the diameter of single walled carbon nanotubes for hydrogen storage. Duke University Project ID # STP35. Durham , NC : DOE Center of Excellence on Carbon-Based Hydrogen Storage Materials .
  • Baughman, R. H., A. A. Zakhidov, and W. A. De Heer. 2002. Carbon nanotubes—the route toward applications. Science 297(5582): 787792.
  • Baumann, H. and A.-M. Tillman. 2004. The hitchhiker's guide to LCA. Lund , Sweden : Studentlitteratur.
  • Bousted, I. and G. F. Hancock. 1979. Handbook of industrial energy analysis. New York : Wiley
  • Bronikowski, M. J., P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley. 2001. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. Journal of Vacuum Science Technology A 19(4): 18001805.
  • Cientifica, Inc. 2003. Nanotubes. White paper. http://www.cientifica.eu/index.php?option=com_content&task=view&id=47&Itemid=88. Accessed November 2006.
  • CNI Nanotechnology, Inc. 2006. http://www.cnanotech.com Accessed November 2006. Now http://www.unidym.com.
  • Corrias, M., B. Caussat, A. Ayral, J. Durand, Y. Kihn, P. H. Kalck, and P. H. Serp. 2003. Carbon nanotubes produced by fluidized bed catalytic CVD: First approach of the process. Chemical Engineering Science 58(19): 44754482.
  • Das, N., A. Dalai, J. S. Mohammadzadeh, S. Soltan, and J. Adjaye. 2006. The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44(11): 22362245.
  • Fan, Y.-Y., A. Kaufmann, A. Mukasyan, and A. Varma. 2006. Single- and multi-wall carbon nanotubes produced using the floating catalyst method: Synthesis, purification and hydrogen up-take. Carbon 44(11): 21602170.
  • Guillard, T., G. Flamant, J.-F. Robert, B. Rivoire, J. Giral, and D. Laplaze. 2002. Scale up of a solar reactor for fullerene and nanotube synthesis. Journal of Solar Energy Engineering 124(1): 2326.
  • Isaacs, J. A., A. Tanwani, and M. L. Healy. 2006. Environmental assessment of SWNT production. IEEE International Symposium on Electronics and the Environment 2006: 3841.
  • Kataura, H., Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, and S. Suzuki. 2000. Diameter control of single-walled carbon nanotubes. Carbon 38(11–12): 16911697.
  • Kim, W., H. Cheul Choi, M. Shim, Y. Li, D. Wang, and H. Dai. 2002. Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Letters 2(7):703708.
  • Kushnir, D. 2007. A technology assessment of carbon nanoparticles: Production energy requirements and implications for use. Master's thesis, Chalmers University of Technology , Göteborg , Sweden .
  • Li, Y., X. B. Zhang, X.Y. Tao, J. M. Xu, W. Z. Huang, J. H. Luo, Z. Q. Luo, T. Li, F. Liu, Y. Bao, and H. J. Geise. 2005. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43(2): 295301.
  • Luizi, F. 2007. Personal communication with F. Luizi, Research and Development Director, Nanocyl, Inc., Sambreville, Belgium, October 2007.
  • Nasibulin, A. G., P. Quiepo, S. Shandakov, D. Brown, H. Jiang, P. Pikhitsa, O. Tolochko, and E. Kauppinen. 2006. Studies on mechanism of single-walled nanotube formation. Journal of Nanoscience and Nanotechnology 6(5): 12331246.
  • Plastics Europe. 2006. LCA process inventories for refining and plastic production. http://www.plasticseurope.org/content/default.asp?pageid=1170. Accessed January 2007.
  • Qiu, J., Z. Wang, Z. Zhao, and T. Wang. 2007. Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere. Fuel 86(1–2): 282286.
  • Rydh, C. J. and B. A. Sandén. 2005. Energy analysis of batteries in photovoltaic systems: Part II. Energy return factors and overall battery efficiencies. Energy Conversion and Management 46(11–12): 19802000.
  • Setoguchi, T., M. Nozaki, H. Hashimoto, and T. Fujii. 2006. Development of fabrication technology of carbon nanotube by fluidized-bed reactor. Mitsubishi Heavy Industries, Ltd., Technical Review 43(1): 1821.
  • Smalley, R. E. 2005. Future global energy prosperity: The terawatt challenge. MRS Bulletin 30:412417.
  • Spath, P. L., W. A. Amos, and M. K. Mann. 2002 Process analysis work for the DOE Hydrogen Program. In Proceedings of the 2002 U.S. DOE Hydrogen Program Review (NREL/CP-610-32405). Washington , DC : U.S. Department of Energy .
  • Sunér, M. 1996. Life cycle assessment of aluminium, copper and steel. Master's thesis, Chalmers University of Technology , Göteborg , Sweden .
  • Takehara, H., M. Fujiwara, M. Arikawa, M. D. Diener, and J. M. Alford. 2005. Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 43(2): 311319.
  • Veld, M. A. J., R. D. De Fouw, B. Hamers, P. G. A. Janssen, K. Schouteden, and M. Daenen. 2003. The wondrous world of carbon nanotubes: A review of current nanotube technologies. Eindhoven , the Netherlands : Eindhoven University of Technology.
  • Wang, Y., F. Wei, G. Luo, H. Yu, and G. Gu. 2002. The large scale production of carbon nanotubes in a nano-agglomerate fluidized bed reactor. Chemical Physics Letters 364(5–6): 568572.
  • Yu, J. L., J. Lucas, V. Strezov, and T. Wall. 2003. Coal and carbon nanotube production. Fuel 82:20252032.