SEARCH

SEARCH BY CITATION

Keywords:

  • Australia;
  • industrial ecology;
  • material flows;
  • physical accounting;
  • resource productivity;
  • stocks and flows

Summary

In this article we test the long-term dematerialization potential for Australia in terms of materials, energy, and water use as well as CO2 emissions by introducing concrete targets for major sectors. Major improvements in the construction and housing, transport and mobility, and food and nutrition sectors in the Australian economy, if coupled with significant reductions in the resource export sectors, would substantially improve the current material, energy, and emission intensive pattern of Australia's production and consumption system. Using the Australian Stocks and Flows Framework we model all system interactions to understand the contributions of large-scale changes in technology, infrastructure, and lifestyle to decoupling the economy from the environment. The modeling shows a considerable reduction in natural resource use, while energy and water use decrease to a much lesser extent because a reduction in natural resource consumption creates a trade-off in energy use. It also shows that trade and economic growth may continue, but at a reduced rate compared with a business-as-usual scenario. The findings of our modeling are discussed in light of the large body of literature on dematerialization, eco-efficiency, and rebound effects that may occur when efficiency is increased. We argue that Australia cannot rely on incremental efficiency gains but has to undergo a sustainability transition to achieve a low carbon future to keep in line with the international effort to avoid climate change and resource use conflicts. We touch upon the institutional changes that would be required to guide a sustainability transition in the Australian economy, such as an emission trading scheme.