• energy footprint;
  • exergy;
  • industrial ecology;
  • life cycle impact assessment (LCIA);
  • nanotechnology;
  • resource accounting


Life cycle impact of emissions, energy requirements, and exergetic losses are calculated for a novel process for producing titanium dioxide nanoparticles from an ilmenite feedstock. The Altairnano hydrochloride process analyzed is tailored for the production of nanoscale particles, unlike established commercial processes. The life cycle energy requirements for the production of these particles is compared with that of traditional building materials on a per unit mass basis. The environmental impact assessment and energy analysis results both emphasize the use of nonrenewable fossil fuels in the upstream life cycle. Exergy analysis shows fuel losses to be secondary to material losses, particularly in the mining of ilmenite ore. These analyses are based on the same inventory data. The main contributions of this work are to provide life cycle inventory of a nanomanufacturing process and reveal potential insights from exergy analysis that are not available from other methods.