Integrated Economic Equilibrium and Life Cycle Assessment Modeling for Policy-based Consequential LCA



Consequential life cycle assessment (CLCA) has emerged as a tool for estimating environmental impacts of changes in product systems that go beyond physical relationships accounted for in attributional LCA (ALCA). This study builds on recent efforts to use more complex economic models for policy-based CLCA. A partial market equilibrium (PME) model, called the U.S. Forest Products Module (USFPM), is combined with LCA to analyze an energy demand scenario in which wood use increases 400 million cubic meters in the United States for ethanol production. Several types of indirect economic and environmental impacts are identified and estimated using USFPM-LCA. A key finding is that if wood use for biofuels increases to high levels and mill residue is used for biofuels and replaced by natural gas for heat and power in forest products mills, then the increased greenhouse gas emissions from natural gas could offset reductions obtained by substituting biofuels for gasoline. Such high levels of biofuel demand, however, appear to have relatively low environmental impacts across related forest product sectors.