SEARCH

SEARCH BY CITATION

BACKGROUND: Several strategies are being developed to reduce the risk of pathogen transmission associated with platelet (PLT) transfusion.

STUDY DESIGN AND METHODS: The impact of a new technology for pathogen reduction based on riboflavin plus illumination (Mirasol PRT, Navigant Biotechnologies, Inc.) at 6.2 and 12.3 J per mL on functional and biochemical characteristics of PLTs was evaluated. PLT concentrates (PCs) obtained by apheresis were treated with Mirasol PRT and stored at 22°C. Modifications in major PLT glycoproteins (GPIbα, GPIV, and GPIIb-IIIa), adhesive ligands (von Willebrand factor [VWF], fibrinogen [Fg], and fibronectin), activation antigens (P-selectin and LIMP), and apoptotic markers (annexin V binding and factor [F]Va) were analyzed by flow cytometry. Adhesive and cohesive PLT functions were evaluated with well-established perfusion models. Studies were performed on the preparation day (Day 0) and during PCs storage (Days 3 and 5).

RESULTS: Levels of glycoproteins remained stable during storage in PCs treated with 6.2 J per mL pathogen reduction technology (PRT) and similar to those observed in nontreated PCs. When 12.3 J per mL PRT was applied, however, levels of GPIbα moderately decreased on Days 3 and 5. VWF, Fg, and FVa were not modified in their expression levels, either by treatment or by storage period. Fibronectin appeared more elevated in all PRT samples. A progressive increase in P-selectin and LIMP expression and in annexin V binding was observed during storage of PRT-treated PCs. Functional studies indicated that 6.2 J per mL Mirasol PRT–treated PLTs preserved adhesive and cohesive functions to levels compatible with those observed in the respective control PCs.

CONCLUSION: PLT function was well preserved in PCs treated with 6.2 J per mL Mirasol PRT and stored for 5 days.