SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • Birkhoff, G. (1972), The Numerical Solution of Elliptic Equations. Philadelphia: SIAM.
  • Blau, P., and O. Duncan (1967), The American Occupational Structure. New York: Wiley.
  • Bureau of the Census (1973). 1970 Census of Population, Subject Report Pc (2) 2B. Mobility for States and the Nation. Washington, D.C.: Department of Commerce.
  • Buzbee, G., G. Golub, and C. Nielson (1970). “On Direct Methods for Solving Poisson's Equation,” SLAM Journal of Numerical Analysis, 7, 62756.
  • Collins, L., (1974). “Estimating Markov Transition Probabilities from Micro-unit Data.” Applied Statistics, 23, 35571.
  • Dennis, J. B. (1959). Mathematical Programming and Electrical Networks. Cambridge, Mass.: MIT Press.
  • Forsythe, G., and W. Wasow (1960). Finite Difference Methods for Partial Differential Equations. New York: Wiley.
  • Garbrecht, D. (1970). “Frequency Distributions of Pedestrians in a Rectangular Grid.” Journal of Transport Economics and Policy, 5, 6688.
  • Garbrecht, D. (1971). “Pedestrian Paths Through a Uniform Environment.” Town Planning Review, 42, 7184.
  • Hersh, R., and R. Griego (1969). “Brownian Motion and Potential Theory.” Scientific American, 220, 6774.
  • Kantorovich, L., and V. Krylov (1958). Approximate Methods of Higher Analysis. Groningen: Noordhoff.
  • Kemeny, J., H. Mirkil, J. Snell, and G. Thompson (1959). Finite Mathematical Structures. Englewood Cliffs, N.J.: Prentice-Hall.
  • Kemeny, J., J. Snell, and A. Knapp (1966). Denumerable Markov Chains. Princeton, N.J.: Van Nostrand.
  • Ketter, R., and S. Prawel (1972). Modern Methods of Engineering Computation. New York: McGraw-Hill.
  • Koopmans, T., and S. Reiter (1951). “A Model of Transportation.” In Activity Analysis of Production, edited by T.Koopmans. New York: Wiley.
  • McQuistan, R. (1965). Scalar and Vector Fields. New York: Wiley.
  • Milliff, R. (1980). “Boundary Condition Specification for a Model of Geographical Movement.” Master's thesis, University of California, Santa Barbara.
  • Pignatello, S. (1977). Mathematical Modeling for Management of the Quality of Circulating Currency. Philadelphia: Federal Reserve Bank of Philadelphia.
  • Proskurowski, W., and O. Widlund (1976). “On the Numerical Solution of Helmholtz's Equation by the Capacitance Matrix Method.” Mathematics of Computation, 30, 43368.
  • Roache, P. (1972). Computational Fluid Dynamics. Albuquerque, N.M.: Hermosa.
  • Shepard, R. (1962). “The Analysis of Proximities.” Psychometrika, 27, 12540, 219–46.
  • Spitzer, F. (1964). Principles of Random Walk. Princeton, N.J.: Van Nostrand.
  • Steiglitz, K. (1974). An Introduction to Discrete Systems. New York: Wiley.
  • Tobler, W. (1970). “A Computer Movie Simulating Population Growth in the Detroit Region.” Economic Geography. 42, 23440.
  • Tobler, W. (1974). “Local Map Projections.” The American Cartographer, 1, 5162.
  • Tobler, W. (1979a). “Estimation of Attractivities from Interactions.” Environment and Planning A, 11, 12127.
  • Tobler, W. (1979b). “Smooth Pychnophylactic Interpolation for Geographic Regions.” Journal of the American Statistical Association, 74, 367, 519–36.
  • Wachspress, E. (1966). Iterative Solution of Elliptic Systems. Englewood Cliffs, N.J.: Prentice-Hall.
  • Waugh, F., and M. Abel (1967). “On Fractional Powers of a Matrix.” Journal of the American Statistical Association, 62, 101821.
  • Weinstein, B., and R. Firestine (1978). Regional Growth and Decline in the United States. New York: Praeger.
  • White, R., and W. Palson Jr.. (1955). “On the Forecasting Possibilities of Empirical Influence Functions.” Journal of Meterology, 12, 47885.
  • Whittaker, T. (1977). “Automated Streamline Analysis.” Monthly Weather Review, 105, 78688.
  • Wilson, A. (1967). “A Statistical Theory of Spatial Distribution Models.” Transportation Research, 1, 25369.
  • Young, D. (1962). “The Numerical Solution of Elliptic and Parabolic Partial Differential Equations.” In Survey of Numerical Methods, edited by J.Todd, New York: McGraw-Hill.