SEARCH

SEARCH BY CITATION

References

  • 1
    Pisano JJ, Finlayson JS, Peyton MP. Crosslinks in fibrin polymerized by F XIII: ε-(γ-glutamyl)-lysine. Sci 1968; 160: 8923.
  • 2
    Blomback BEG. In: Gottschalk A, ed. Glycoproteins, Vol. 5, Part B. New York: Elsevier/North Holland, 1972: 106981.
  • 3
    Townsend RR, Hilliker E, Li YT, Laine RA, Bell WR, Lee YC. Carbohydrate structure of human fibrinogen. Use of 300-MHz 1H-NMR to characterize glycosidase-treated glycopeptides. J Biol Chem 1982; 257: 970410.
  • 4
    Töpfer-Petersen E, Lottspeich F, Henschen A. Carbohydrate linkage site in the β-chain of human fibrin. Hoppe-Seyler's Z Physiol Chem 1976; 357: 150913.
  • 5
    Watt KWK, Takagi T, Doolittle RF. Amino acid sequence of the β chain of human fibrinogen. Biochemistry 1979; 18: 6876.
  • 6
    Blombäck B, Gröndhal NJ, Hessel B, Iwanaga S, Wallén P. Primary structure of human fibrinogen and fibrin. J Biol Chem 1973; 248: 580620.
  • 7
    Gati WP, Straub PW. Separation of both the Bβ- and the γ-polypeptide chains of human fibrinogen into two main types which differ in sialic acid content. J Biol Chem 1978; 253: 131521.
  • 8
    Dang CV, Shin CK, Bell WR, Nagaswami C, Weisel JW. Fibrinogen sialic acid residues are low affinity calcium binding sites that influence fibrin assembly. J Biol Chem 1989; 264: 151048.
  • 9
    Gralnick HR, Givelber H, Abrams E. Dysfibrinogenemia associated with hepatoma. Increased carbohydrate content of the fibrinogen molecule. N Engl J Med 1978; 299: 2216.
  • 10
    Martinez J, Palascak JE, Peters C. Functional and metabolic properties of human asialofibrinogen. J Lab Clin Med 1977; 89: 36777.
  • 11
    Townsend RR, Hilliker E, Li YT, Laine RA, Bell WR, Lee YC. Carbohydrate structure of human fibrinogen. J Biol Chem 1982; 257: 970410.
  • 12
    Morell AG, Gregoriadis G, Scheinberg IH. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246: 14617.
  • 13
    Martinez J, Palascak JE, Kwasniak D. Abnormal sialic content of the dysfibrinogenemia associated with liver disease. J Clin Invest 1978; 61: 5358.
  • 14
    Kaudewitz H, Henschen A, Soria J, Soria C. Fibrinogen Pontoise—a genetically abnormal fibrinogen with defective fibrin polymerization but normal fibrinopeptide release. In: LaneDA, HenschenA, JasaniHK, eds. Fibrinogen, Fibrin Formation and Fibrinolysis. Berlin: Walter de Gruyter, 1986: 916.
  • 15
    Yamazumi K, Shimura K, Terukina S, Takahashi N, Matsuda M. A γ methionine-310 to threonine substitution and consequent N-glycosylation at γ asparagine-308 identified in a congenital dysfibrinogenemia associated with posttraumatic bleeding, fibrinogen Asahi. J Clin Invest 1989; 83: 15907.
  • 16
    Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Bosch NB, Carvajal Z, Ojeda A, Arocha-Piñango CL, Matsuda M. An Aα Ser-434 to N-glycosylated Asn substitution in a dysfibrinogen, fibrinogen Caracas II, characterized by impaired fibrin gel formation. J Biol Chem 1991; 266: 1157581.
  • 17
    Ridgway HJ, Brennan SO, Loreth RM, George PM. Fibrinogen Kaiserslautern (γ 380 Lys to Asn): a new glycosylated fibrinogen variant with delayed polymerization. Br J Haematol 1997; 99: 5629.
  • 18
    Sugo T, Nakamikawa C, Takano H, Mimuro J, Yamaguchi S, Mosseson MW, Meh DA, DiOrio JP, Takahashi N, Takahashi H, Nagau K, Matsuda M. Fibrinogen Niigata with impaired fibrin assembly: an inherited dysfibrinogen with a Bβ Asn-160 to Ser substitution associated with extra glycosylation at Bβ Asn-158. Blood 1999; 94: 380613.
  • 19
    Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Arocha-Piñango CL, Rodriguez S, Nagy H, Perez-Requejo JL, Matsuda M. Fibrinogen Lima: a homozygous dysfibrinogen with an Aα-arginine-141 to serine substitution associated with extra N-glycosylation at Aα-asparagine-139. J Clin Invest 1992; 90: 6776.
  • 20
    Arocha-Piñango CL, Rodriguez S, Nagy H, Perez-Requejo JL. Fibrinogen Lima. A new dysfibrinogenemia with a high-molecular-weight α-chain and effective polymerization. Blood Coagul Fibrinol 1990; 1: 5615.
  • 21
    Matsuda M, Baba M, Morimoto K, Nakamikawa C. Fibrinogen Tokyo II: an abnormal fibrinogen with an impaired polymerization site on the aligned DD domain of fibrin molecules. J Clin Invest 1983; 72: 103441.
  • 22
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond) 1970; 227: 6805.
  • 23
    Ingram GIC. The determination of plasma fibrinogen by clot weight method. Biochem J 1952; 51: 5835.
  • 24
    Blombäck B, Carlsson K, Hessel B, Liljeborg A, Procyck R, Åslund N. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Biophys Acta 1989; 997: 96110.
  • 25
    Langer BG, Weisel JW, Dinauer PA, Nagaswami C, Bell WR. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem 1988; 263: 1505663.
  • 26
    Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63: 11128.
  • 27
    Plazek DJ, Vrancken MN, Berge JW. A torsion pendulum for dynamic creep measurements of soft viscoelastic materials. Trans Soc Rheol 1958; 2: 3951.
  • 28
    Gerth C, Roberts WW, Ferry JD. Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep. Biophys Chem 1974; 2: 20817.
  • 29
    Janmey PA. A torsion pendulum for measurement of the viscoelasticity of biopolymers and its application to actin networks. J Biochem Biophys Meth 1991; 22: 4153.
  • 30
    Diaz-Mauriño T, Castro C, Albert A. Desialylation of fibrinogen with neuraminidase. Kinetic and clotting studies. Thromb Res 1982; 27: 397403.
  • 31
    Woodhead JL, Nagaswami C, Matsuda M, Arocha-Piñango CL, Weisel JW. The ultrastructure of fibrinogen Caracas II molecules, fibers, and clots. J Biol Chem 1996; 271: 494653.
  • 32
    Ferry JD, Miller M, Shulman S. The conversion of fibrinogen to fibrin. VII. Rigidity and stress relaxation of fibrin clots; effects of calcium. Arch Biochem Biophys 1951; 34: 42436.
  • 33
    Roberts WW, Lorand LL, Mockros LF. Viscoelastic properties of fibrin clots. Biorheology 1973; 10: 2942.
  • 34
    Mockros LF, Roberts WW, Lorand L. Viscoelastic properties of ligation-inhibited fibrin clots. Biophys Chem 1974; 2: 1649.
  • 35
    Glover CJ, McIntire LV, Brown CH, Natelson EA. Rheological properties of fibrin clots. Effects of fibrinogen concentration, factor XIII deficiency, and factor XIII inhibition. J Lab Clin Med 1975; 86: 64456.
  • 36
    Shen LL, Hermans J, McDonagh J, McDonagh RP, Carr M. Effects of calcium ion and covalent cross-linking on formation and elasticity of fibrin gels. Thromb Res 1975; 6: 25565.
  • 37
    Shen LL, Lorand L. Contribution of fibrin stabilization to clot strength. Supplementation of factor XIII-deficient plasma with the purified zymogen. J Clin Invest 1983; 71: 133641.
  • 38
    Gladner JA, Nossal R. Effects of cross-linking on the rigidity and proteolytic susceptibility of human fibrin clots. Thromb Res 1983; 30: 27388.
  • 39
    Shen LL, McDonagh RP, McDonagh J, Hérmans J. Fibrin gel structure: influence of calcium and covalent cross-linking on the elasticity. Biochem Biophys Res Commun 1974; 56: 7938.
  • 40
    Roberts WW, Kramer O, Rosser RW, Nestler HM, Ferry JD. Rheology of fibrin clots. I. Dynamic viscoelastic properties and fluid permeation. Biophys Chem 1974; 1: 15260.
  • 41
    Nelb GW, Gerth C, Ferry JD, Lorand L. Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated clots. Biophys Chem 1976; 5: 37787.
  • 42
    Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J 1999; 77: 281326.
  • 43
    Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. : Proc Natl Acad Sci USA 2000; 97: 1415661.