Measurement of von Willebrand factor cleaving protease (ADAMTS-13): results of an international collaborative study involving 11 methods testing the same set of coded plasmas

Authors


Professor P. M. Mannucci, Via Pace 9, 20122 Milano, Italy. Tel.: +39 02 55035422; fax: +39 02 50320723; e-mail: pmmannucci@libero.it

Abstract

Summary. Background: ADAMTS-13 is a von Willebrand factor (VFW)-cleaving protease. Its congenital or acquired deficiency is associated with thrombotic thrombocytopenic purpura (TTP) and more rarely with the hemolytic uremic syndrome. We report on a survey evaluating 11 methods for ADAMTS-13 measurement performed in different labs. Design: Two plasmas, one normal and one from a patient with familial TTP, were mixed at the co-ordinating center to prepare 6 plasmas with 0%, 10%, 20%, 40%, 80% and 100% ADAMTS-13 levels. Each plasma was aliquoted and assembled into sets of 60 (coded from 1 to 60), each containing 10 copies of the original 6 plasmas. Plasmas were frozen and shipped in dry ice to 10 labs with a common frozen reference plasma. Laboratories were asked to measure ADAMTS-13 with their methods. Results were sent to the coordinating center for statistical analysis. Results: Of the 10 methods performed under static conditions 9 were quantitative and one was semiquantitative. One method performed under flow conditions evaluated the extent of cleavage of endothelial cell-derived ultralarge VWF string-like structures and expressed results as deficient, normal, or borderline. Linearity (expected-vs-observed levels), assessed as the squared correlation coefficient, ranged from 0.98 to 0.39. Reproducibility, expressed as the coefficient of variation for repeated measurements, ranged from < 10% to 83%. The majority of methods were able to discriminate between different ADAMTS-13 levels. The majority were able to detect the plasma with 0% level and some of them to discriminate between 0% and 10%. Overall the best performance was observed for three methods measuring cleaved VWF by ristocetin cofactor, collagen binding, and immunoblotting of degraded multimers of VWF substrate, respectively. The poor interlaboratory agreement of results was hardly affected by the use of the common standard. The method performed under flow conditions identified the plasmas with 0%, 10%, 20% and 40% activity as deficient in 7, 5, 1 and 3 of the 10 replicate measurements. The plasmas with 80% and 100% were identified as normal in all of the 10 replicate measurements. Conclusions: The survey shows varied performance, but supports an optimistic view about the reliability of current methods for ADAMTS-13.

Ancillary