• 1
    Doolittle RF. Fibrinogen and fibrin. Ann Rev Biochem 1984; 53: 195229.
  • 2
    Blomback B, Hessel B, Hogg D, Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation. Nature 1978; 275: 5015.
  • 3
    Matsuda M, Baba M, Morimoto K, Nakamikawa C. ‘Fibrinogen Tokyo II’ an abnormal fibrinogen with an impaired polymerization site on the aligned DD domain of fibrin molecules. J Clin Invest 1983; 72: 103441.
  • 4
    Mosesson MW, Siebenlist KR, DiOrio JP, Matsuda M, Hainfeld JF, Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg[RIGHTWARDS ARROW]Cys). J Clin Invest 1995; 96: 10538.
  • 5
    Ruf W, Bender A, Lane DA, Preissner KT, Selmeayr E, Muller-Berghaus G. Thrombin-induced fibrinopeptide B release from normal and variant fibrinogens: influence of inhibitors of fibrin polymerization. Biochim Biophys Acta 1988; 965: 16975.
  • 6
    Weisel JW. Fibrin assembly: lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J 1986; 50: 107993.
  • 7
    Everse SJ, Spraggon G, Veerapandian L, Doolittle R. Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide. Biochemistry 1999; 38: 29416.
  • 8
    Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad Sci USA 1980; 77: 13748.
  • 9
    Veklich YI, Gorkun OV, Medved LV, Nieuwenhuizen W, Weisel JW. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin: localization by electron microscopy and the effects of isolated αC fragments on polymerization. J Biol Chem 1993; 268: 1357785.
  • 10
    Gorkun OV, Veklich YI, Medved LV, Henschen AH, Weisel JW. Role of the αC domains of fibrin in clot formation. Biochemistry 1994; 33: 698697.
  • 11
    Yang ZI, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 2000; 97: 1415661.
  • 12
    Moen JL, Gorkun OV, Weisel JW, Lord ST. Recombinant BβArg14His fibrinogen implies participation of N-terminus of Bβ chain in desA fibrin polymerization. Blood 2003; 102: 246671.
  • 13
    Pandya BV, Cierniewski CS, Budzynski AZ. Conservation of human fibrinogen conformation after cleavage of the Bβ chain NH2 terminus. J Biol Chem 1985; 260: 29943000.
  • 14
    Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW. The polymerization and thrombin-binding properties of des-(Bβ1–42)-fibrin. J Biol Chem 1990; 265: 186505.
  • 15
    Koopman J, Haverkate F, Grimbergen J, Engesser L, Novakova I, Kerst AF, Lord ST. Abnormal fibrinogens IJmuiden (BβArg14Cys) and Nijmegen (BβArg44Cys) form disulfide-linked fibrinogen-albumin complexes. Proc Natl Acad Sci USA 1992; 89: 347882.
  • 16
    Kamura T, Tsuda H, Yae Y, Hattori S, Ohga S, Shibata Y, Kawabata S, Hamasaki N. An abnormal fibrinogen Fukuoka II (Gly-Bβ[RIGHTWARDS ARROW]15Cys) characterized by defective fibrin lateral association and mixed disulfide formation. J Biol Chem 1995; 270: 293929.
  • 17
    Shimizu A, Saito Y, Inada Y. Distinctive role of histidine-16 of the Bβ chain of fibrinogen in the end-to-end association of fibrin. Proc Natl Acad Sci USA 1986; 83: 5913.
  • 18
    Hirota-Kawadobora M, Terasawa F, Yonekawa S, Sahara M, Shimizu E, Okumura N, Katsuyama T, Shigematsu H. Fibrinogens Kosai and Ogasa: Bβ15Gly[RIGHTWARDS ARROW]Cys (GGT[RIGHTWARDS ARROW]TGT) substitution associated with impairment of fibrinopeptide B release and lateral aggregation. J Thromb Haemost 2003; 1: 27583.
  • 19
    Hogan KA, Lord ST, Okumura N, Terasawa F, Galanakis DK, Scharrer I, Gorkun OV. A functional assay suggests that heterodimers exist in two C-terminal γ-chain dysfibrinogens: Matsumoto I and Vlissingen/Frankfurt IV. Thromb Haemost 2000; 83: 5927.
  • 20
    Okumura N, Terasawa F, Fujita K, Fujihara N, Tozuka M, Koh C-S. Evidence that heterodimers exist in the fibrinogen Matsumoto II (γ308N[RIGHTWARDS ARROW]K) proband and participate in fibrin fiber formation. Thromb Res 2002; 107: 15762.
  • 21
    Okumura N, Terasawa F, Tanaka H, Hirota M, Ota H, Kitano K, Kiyosawa K, Lord ST. Analysis of fibrinogen γ-chain truncations shows the C-terminus, particularly γIle387, is essential for assembly and secretion of this multichain protein. Blood 2002; 99: 365460.
  • 22
    Ng AS, Lewis SD, Shafer JA. Quantifying thrombin-catalyzed release of fibrinopeptides from fibrinogen using high-performance liquid chromatography. Methods Enzymol 1993; 222: 34158.
  • 23
    Holm B, Nilsen DWT, Kierulf P, Godal HC. Purification and characterization of 3 fibrinogens with different molecular weights obtained from normal human plasma. Thromb Res 1985; 37: 16576.
  • 24
    Weisel, JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63: 11128.