SEARCH

SEARCH BY CITATION

References

  • 1
    Henschen A, Lottspeich F, Kehl M, Southan C. Covalent structure of fibrinogen. Ann N Y Acad Sci 1983; 408: 2843.
  • 2
    Blombäck B, Hessel B, Hogg D. Disulfide bridges in NH2-terminal part of human fibrinogen. Thromb Res 1976; 8: 63958.
  • 3
    Huang S, Cao Z, Davie EW. The role of amino-terminal disulfide bonds in the structure and assembly of human fibrinogen. Biochem Biophys Res Commun 1993; 190: 48895.
  • 4
    Zhang J-Z, Redman CM. Identification of Bβ chain domains involved in human fibrinogen assembly. J Biol Chem 1992; 267: 2172732.
  • 5
    Hoeprich PD Jr, Doolittle RF. Dimeric half-molecules of human fibrinogen are joined through disulfide bonds in an antiparallel orientation. Biochemistry 1983; 22: 204955.
  • 6
    Chung DW, Davie EW. γ- and γ′-chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry 1984; 23: 42326.
  • 7
    Wolfenstein-Todel C, Mosesson MW. Carboxy-terminal amino acid sequence of a human fibrinogen γ chain variant (γ′). Biochemistry 1981; 20: 61469.
  • 8
    Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW. The amino acid sequences in fibrin responsible for high affinity thrombin binding. Thromb Haemost 2001; 85: 4704.
  • 9
    Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities: III. Identification of γ chain variants. J Biol Chem 1972; 247: 52237.
  • 10
    Wolfenstein-Todel C, Mosesson MW. Human plasma fibrinogen heterogeneity: evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (γ′). Proc Natl Acad Sci U S A 1980; 77: 506973.
  • 11
    Scheraga HA, Laskowski M Jr. The fibrinogen-fibrin conversion. Adv Protein Chem 1957; 12: 1131.
  • 12
    Blombäck B. Studies on the action of thrombotic enzymes on bovine fibrinogen as measured by N-terminal analysis. Ark Kemi 1958; 12: 32135.
  • 13
    Blombäck B, Hessel B, Hogg D, Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation. Nature 1978; 275: 5015.
  • 14
    Laudano AP, Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Proc Natl Acad Sci U S A 1978; 75: 30859.
  • 15
    Liu CY, Koehn JA, Morgan FJ. Characterization of fibrinogen New York 1. J Biol Chem 1985; 260: 43906.
  • 16
    Pandya BV, Cierniewski CS, Budzynski AZ. Conservation of human fibrinogen conformation after cleavage of the Bβ-chain NH2-terminus. J Biol Chem 1985; 260: 29943000.
  • 17
    Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW. The polymerization and thrombin-binding properties of des-(B beta 1–42)-fibrin. J Biol Chem 1990; 265: 186505.
  • 18
    Shimizu A, Nagel GM, Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: isolation of a CNBr fragment corresponding to γ337–379. Proc Natl Acad Sci U S A 1992; 89: 288892.
  • 19
    Pratt KP, Côté HCF, Chung DW, Stenkamp RE, Davie EW. The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal γ-chain fragment complexed with the peptide gly-pro-arg-pro. Proc Natl Acad Sci U S A 1997; 94: 717681.
  • 20
    Everse SJ, Spraggon G, Veerapandian L, Riley M, Doolittle RF. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry 1998; 37: 863742.
  • 21
    Ferry JD. The mechanism of polymerization of fibrinogen. Proc Natl Acad Sci U S A 1952; 38: 5669.
  • 22
    Krakow W, Endres GF, Siegel BM, Scheraga HA. An electron microscopic investigation of the polymerization of bovine fibrin monomer. J Mol Biol 1972; 71: 95103.
  • 23
    Fowler WE, Hantgan RR, Hermans J, Erikson HP. Structure of the fibrin protofibril. Proc Natl Acad Sci U S A 1981; 78: 48726.
  • 24
    Müller MF, Ris HA, Ferry JD. Electron microscopy of fine fibrin clots and fine and coarse fibrin films. J Mol Biol 1984; 174: 36984.
  • 25
    Mosesson MW, Siebenlist KR, Amrani DL, DiOrio JP. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc Natl Acad Sci U S A 1989; 86: 11137.
  • 26
    Hewat EA, Tranqui L, Wade RH. Electron microscope structural study of modified fibrin and a related modified fibrinogen aggregate. J Mol Biol 1983; 170: 20322.
  • 27
    Mosesson MW, DiOrio JP, Siebenlist KR, Wall JS, Hainfeld JF. Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction. Blood 1993; 82: 151721.
  • 28
    Mosesson MW, DiOrio JP, Muller MF, Shainoff JR, Siebenlist KR, Amrani DL, Homandberg GA, Soria J, Soria C, Samama M. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (β-fibrin). Blood 1987; 69: 107381.
  • 29
    Blomback B, Carlsson K, Fatah K, Hessel B, Procyk R. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation. Thromb Res 1994; 75: 52138.
  • 30
    Shainoff JR, Dardik BN. Fibrinopeptide B in fibrin assembly and metabolism: physiologic significance in delayed release of the peptide. Ann N Y Acad Sci 1983; 408: 25467.
  • 31
    Medved LV, Litvinovich SV, Ugarova TP, Lukinova NI, Kilikhevich VN, Ardemasova ZA. Localization of a fibrin polymerization site complimentary to Gly-His-Arg sequence. FEBS Lett 1993; 320: 23942.
  • 32
    Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci U S A 2000; 97: 1415661.
  • 33
    Weisel JW, Medved’ LV. The structure and function of the αC domains of fibrinogen. Ann N Y Acad Sci 2001; 936: 31227.
  • 34
    Mosesson MW, Sherry S. The preparation and properties of human fibrinogen of relatively high solubility. Biochemistry 1966; 5: 282935.
  • 35
    Mosesson MW. Fibrinogen heterogeneity. Ann N Y Acad Sci 1983; 408: 97113.
  • 36
    Hasegawa N, Sasaki S. Location of the binding site ‘b’ for lateral polymerization of fibrin. Thromb Res 1990; 57: 18395.
  • 37
    Mosesson MW, Hainfeld JF, Haschemeyer RH, Wall JS. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J Mol Biol 1981; 153: 695718.
  • 38
    Veklich YI, Gorkun OV, Medved LV, Niewenhuizen W, Weisel JW. Carboxyl-terminal portions of the α-chains of fibrinogen and fibrin. J Biol Chem 1993; 268: 1357785.
  • 39
    Gorkun OV, Veklich YI, Medved LV, Henschen A, Weisel JW. Role of the αC domains of fibrin in clot formation. Biochemistry 1994; 33: 698697.
  • 40
    Mosesson MW, Siebenlist KR, Hainfeld JF, Wall JS. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils. J Struct Biol 1995; 115: 88101.
  • 41
    Mosesson MW, Siebenlist KR, DiOrio JP, Matsuda M, Hainfeld JF, Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg[RIGHTWARDS ARROW]Cys). J Clin Invest 1995; 96: 10538.
  • 42
    Siebenlist KR, Meh D, Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin. Thromb Haemost 2001; 86: 12218.
  • 43
    Mosesson MW, Siebenlist KR, Hernandez I, Wall JS, Hainfeld JF. Fibrinogen assembly and crosslinking on a fibrin fragment E template. Thromb Haemost 2002; 87: 6518.
  • 44
    Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389: 45562.
  • 45
    McKee PA, Mattock P, Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A 1970; 66: 73844.
  • 46
    Kanaide H, Shainoff JR. Cross-linking of fibrinogen and fibrin by fibrin-stabilizing factor (factor XIIIa). J Lab Clin Med 1975; 85: 57497.
  • 47
    Doolittle RF, Chen R, Lau F. Hybrid fibrin: proof of the intermolecular nature of γ-γ-crosslinking units. Biochem Biophys Res Commun 1971; 44: 94100.
  • 48
    Chen R, Doolittle RF. γ-γ-Cross-linking sites in human and bovine fibrin. Biochemistry 1971; 10: 448691.
  • 49
    Purves LR, Purves M, Brandt W. Cleavage of fibrin-derived D-dimer into monomers by endopeptidase from puff adder venom (Bitis arietans) acting at cross-linked sites of the γ chain. Sequence of carboxy-terminal cyanogen bromide γ-chain fragments. Biochemistry 1987; 26: 46406.
  • 50
    Sobel JH, Gawinowicz MA. Identification of the α chain lysine donor sites involved in factor XIIIa fibrin cross-linking. J Biol Chem 1996; 271: 1928897.
  • 51
    Matsuka YV, Medved LV, Migliorini MM, Ingham KC. Factor XIIIa-catalyzed cross-linking of recombinant αC fragments of human fibrinogen. Biochemistry 1996; 35: 58106.
  • 52
    Folk JE, Finlayson JS. The ɛ-(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem 1977; 31: 1133.
  • 53
    Shainoff JR, Urbanic DA, DiBello PM. Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase. J Biol Chem 1991; 266: 642937.
  • 54
    Siebenlist KR, Mosesson MW. Evidence for intramolecular cross-linked Aαγ chain heterodimers in plasma fibrinogen. Biochemistry 1996; 35: 581721.
  • 55
    Samokhin GP, Lorand L. Contact with the N termini in the central E domain enhances the reactivities of the distal D domains of fibrin to factor XIIIa. J Biol Chem 1995; 270: 2182732.
  • 56
    Mosesson MW. The fibrin cross-linking debate: cross-linked gamma-chains in fibrin fibrils bridge ‘transversely’ between strands: yes. J Thromb Haemost 2004; 2: 38893.
  • 57
    Mosesson MW. Cross-linked gamma-chains in a fibrin fibril are situated transversely between its strands. J Thromb Haemost 2004; 2: 146971.
  • 58
    Weisel JW. Cross-linked gamma-chains in fibrin fibrils bridge transversely between strands: no. J Thromb Haemost 2004; 2: 3949.
  • 59
    Weisel JW. Cross-linked gamma-chains in a fibrin fibril are situated transversely between its strands. J Thromb Haemost 2004; 2: 14679.
  • 60
    Roska FJ, Ferry JD. Studies of fibrin film: I. Stress relaxation and birefringence. Biopolymers 1982; 21: 181132.
  • 61
    Ferry JD. Structure and rheology of fibrin networks. In: KramerO, ed. Biological and Synthetic Polymer Networks. Amsterdam, the Netherlands: Elsevier Applied Science, 1988: 4155.
  • 62
    Siebenlist KR, Meh DA, Mosesson MW. Plasma factor XIII binds specifically to fibrinogen molecules containing γ′ chains. Biochemistry 1996; 35: 1044853.
  • 63
    Siebenlist KR, Mosesson MW, Meh DA, DiOrio JP, Albrecht RM, Olson JD. Coexisting dysfibrinogenemia (gammaR275C) and factor V Leiden deficiency associated with thromboembolic disease (fibrinogen Cedar Rapids). Blood Coagul Fibrinolysis 2000; 11: 293304.
  • 64
    Polgár J, Hidasi V, Muszbek L. Non-proteolytic activation of cellular protransglutaminase (placenta macrophage factor XIII). Biochem J 1990; 267: 55760.
  • 65
    Fenton JW Jr, Olson TA, Zabinski MP, Wilner GD. Anion-binding exosite of human α-thrombin and fibrin(ogen) recognition. Biochemistry 1988; 27: 710612.
  • 66
    Stubbs MT, Bode W. A player of many parts: the spotlight falls on thrombin's structure. Thromb Res 1993; 69: 158.
  • 67
    Seegers WH, Nieft M, Loomis EC. Note on the adsorption of thrombin on fibrin. Science 1945; 101: 5201.
  • 68
    Seegers WH. Multiple protein interactions as exhibited by the blood-clotting mechanism. J Phys Colloid Chem 1947; 51: 198206.
  • 69
    Seegers WH, Johnson JF, Fell C. An antithrombin reaction related to prothrombin activation. Am J Physiol 1954; 176: 97103.
  • 70
    Liu CY, Nossel HL, Kaplan KL. Defective thrombin binding by abnormal fibrin associated with recurrent thrombosis. Thromb Haemost 1979; 42: 79 (abstract).
  • 71
    Meh DA, Siebenlist KR, Mosesson MW. Identification and characterization of the thrombin binding sites on fibrin. J Biol Chem 1996; 271: 231215.
  • 72
    Vali Z, Scheraga HA. Localization of the binding site on fibrin for the secondary binding site of thrombin. Biochemistry 1988; 27: 195663.
  • 73
    Binnie CG, Lord ST. A synthetic analog of fibrinogen α27–50 is an inhibitor of thrombin. Thromb Haemost 1991; 65: 1658.
  • 74
    Pechik I, Madrazo J, Mosesson MW, Hernandez I, Gilliland GL, Medved L. Crystal structure of the complex between thrombin and the central ‘E’ region of fibrin. Proc Natl Acad Sci U S A 2004; 101: 271823.
  • 75
    Lovely RS, Moaddel M, Farrell DH. Fibrinogen γ′ chain binds thrombin exosite II. J Thromb Haemost 2003; 1: 12431.
  • 76
    Pospisil CH, Stafford AR, Fredenburgh JC, Weitz JI. Evidence that both exosites on thrombin participate in its high affinity interaction with fibrin. J Biol Chem 2003; 278: 2158491.
  • 77
    Meh DA, Mosesson MW, Siebenlist KR, Simpson-Haidaris PJ, Brennan SO, DiOrio JP, Thompson K, Di Minno G. Fibrinogen Naples I (Bβ A68T) non-substrate thrombin binding capacities. Thromb Res 2001; 103: 6373.
  • 78
    Kumar R, Béguin S, Hemker C. The influence of fibrinogen and fibrin on thrombin generation-evidence for feedback activation of the clotting system by clot bound thrombin. Thromb Haemost 1994; 72: 71321.
  • 79
    Nossel HL, Ti M, Kaplan KL, Spanondis K, Soland T, Butler VP Jr. The generation of fibrinopeptide A in clinical blood samples. Evidence for thrombin activity. J Clin Invest 1976; 58: 113644.
  • 80
    Francis CW, Markham RE, Barlow GH, Florack TM, Dobrzynski DM, Marder VJ. Thrombin activity of fibrin thrombi and soluble plasmic derivatives. J Lab Clin Med 1983; 102: 22030.
  • 81
    Owen J, Friedman KD, Grossman BA, Wilkins C, Berke AD, Powers ER. Thrombolytic therapy with tissue plasminogen activator or streptokinase induces transient thrombin activity. Blood 1988; 72: 61620.
  • 82
    Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 38591.
  • 83
    Mutch NJ, Robbie LA, Booth NA. Human thrombi contain an abundance of active thrombin. Thromb Haemost 2001; 86: 102834.
  • 84
    Koopman J, Haverkate F, Lord ST, Grimbergen J, Mannucci PM. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. Homozygous substitution of B beta 68 Ala[RIGHTWARDS ARROW]Thr. J Clin Invest 1992; 90: 23844.
  • 85
    Di Minno G, Martinez J, Cirillo F, Cerbone AM, Silver MJ, Colucci M, Margaglione M, Tauro R, Semeraro N, Quattrone A, Mancini M. A role for platelets and thrombin in the juvenile stroke of two siblings with defective thrombin-absorbing capacity of fibrin(ogen). Arterioscler Thromb 1991; 11: 78596.
  • 86
    Caen J, Faur Y, Inceman S, Chassigneux J, Seligmann M, Anagnostopoulos T, Bernard J. Nécrose ischémique bilatérale dans un cas de grande hypofibrinogénémie congénitale. Nouv Rev Fr Hematol 1964; 4: 3216.
  • 87
    Marchal G, Duhamel G, Samama M, Flandrin G. Thrombose massive des vaisseaux d'un membre au cours d'une hypofibrinémie congénitale. Hémostase 1964; 4: 819.
  • 88
    Nilsson IM, Niléhn J-E, Cronberg S, Nordén G. Hypofibrinogenemia and massive thrombosis. Acta Med Scand 1966; 180: 6576.
  • 89
    Ingram GI, McBrien DJ, Spencer H. Fatal pulmonary embolism in congenital fibrinopenia. Acta Haematol 1966; 35: 5662.
  • 90
    Mackinnon HH, Fekete JF. Congenital afibrinogenemia: vascular changes and multiple thrombosis induced by fibrinogen infusions and contraceptive medication. Can Med Assoc J 1971; 140: 5979.
  • 91
    Cronin C, Fitzpatrick D, Temperly I. Multiple pulmonary emboli in a patient with afibrinogenaemia. Acta Haematol 1988; 7: 534.
  • 92
    Drai E, Taillan B, Schneider S, Ferrari E, Bayle J, Dujardin P. Thrombose portale révélatrice d'une afibrinogénémie congénitale. Presse Med 1992; 21: 18201.
  • 93
    Chafa O, Chellali T, Sternberg C, Reghis A, Hamladji RM, Fischer AM. Severe hypofibrinogenemia associated with bilateral ischemic necrosis of toes and fingers. Blood Coagul Fibrinolysis 1995; 6: 54952.
  • 94
    Korte W, Feldges A. Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution. Clin Invest 1994; 72: 3968.
  • 95
    Dupuy E, Soria C, Molho P, Zini J-M, Rosenstingl S, Laurian C, Bruneval P, Tobelem G. Embolized ischemic lesions of toes in an afibrinogenemic patient: possible relevance to in vivo circulating thrombin. Thromb Res 2001; 102: 2119.
  • 96
    de Bosch NB, Mosesson MW, Ruiz-Sáez A, Echenagucia M, Rodriguez-Lemoin A. Inhibition of thrombin generation in plasma by fibrin formation (antithrombin I). Thromb Haemost 2002; 88: 2538.
  • 97
    de Bosch N, Sáez A, Soria C, Soria J, Echenagucia M. Coagulation profile in afibrinogenemia. Thromb Haemost 1997; Suppl: 625 (abstract).
  • 98
    Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 38592.
  • 99
    Levin E. Latent tissue plasminogen activator produced by human endothelial cells in culture: evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci U S A 1983; 80: 68048.
  • 100
    Collen D. On the regulation and control of fibrinolysis. Thromb Haemost 1980; 43: 7789.
  • 101
    Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen. J Biol Chem 1982; 257: 29129.
  • 102
    Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704: 4619.
  • 103
    Bok RA, Mangel WF. Quantitative characterization of the binding of plasminogen to intact fibrin clots, lysine-sepharose, and fibrin cleaved by plasmin. Biochemistry 1985; 24: 327986.
  • 104
    Tsurupa G, Medved L. Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) alpha C-domains. Biochemistry 2001; 40: 8018.
  • 105
    Soria J, Soria C, Caen P. A new type of congenital dysfibrinogenaemia with defective fibrin lysis-Dusard syndrome: possible relation to thrombosis. Br J Haematol 1983; 53: 57586.
  • 106
    Lijnen HR, Soria J, Soria C, Collen D, Caen JP. Dysfibrinogenemia (fibrinogen Dusard) associated with impaired fibrin-enhanced plasminogen activation. Thromb Haemost 1984; 51: 1089.
  • 107
    Mosesson MW, Siebenlist KR, Hainfeld JF, Wall JS, Soria J, Soria C, Caen JP. The relationship between the fibrinogen D domain self-association/crosslinking site (γXL) and the fibrinogen Dusart abnormality (Aα R554C-albumin). J Clin Invest 1996; 97: 234250.
  • 108
    Sugo T, Nakamikawa C, Takebe M, Kohno I, Egbring R, Matsuda M. Factor XIIIa cross-linking of the Marburg fibrin: formation of alpha and gamma-heteromultimers and the alpha-chain-linked albumin gamma complex, and disturbed protofibril assembly resulting in acquisition of plasmin resistance relevant to thrombophila. Blood 1998; 91: 32828.
  • 109
    Mosesson MW, Siebenlist KR, Voskuilen M, Nieuwenhuizen W. Evaluation of the factors contributing to fibrin-dependent plasminogen activation. Thromb Haemost 1998; 79: 796801.
  • 110
    Suenson E, Lützen O, Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis. Eur J Biochem 1984; 140: 51322.
  • 111
    Harpel PC, Chang TS, Verderber E. Tissue plasminogen activator and urokinase mediate the binding of Glu-plasminogen to plasma fibrin I. Evidence for new binding sites in plasmin-degraded fibrin I. J Biol Chem 1985; 260: 443240.
  • 112
    Schielen WJ, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A alpha-(148–160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci U S A 1989; 86: 89514.
  • 113
    Schielen WJ, Adams HP, van Leuven K, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence gamma-(312–324) is a fibrin-specific epitope. Blood 1991; 77: 216973.
  • 114
    Schielen WJG, Adams HPHM, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence Aα-(154–159) of fibrinogen is capable of accelerating the tPA catalyzed activation of plasminogen. Blood Coagul Fibrinolysis 1991; 2: 46570.
  • 115
    Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry 2000; 39: 1573041.
  • 116
    Lezhen TI, Kudinov SA, Medved’ LV. Plasminogen-binding site of the thermostable region of fibrinogen fragment D. FEBS Lett 1986; 197: 5962.
  • 117
    Bosma PJ, Rijken DC, Nieuwenhuizen W. Binding of tissue-type plasminogen activator to fibrinogen fragments. Eur J Biochem 1988; 172: 399404.
  • 118
    de Munk GA, Caspers MP, Chang GT, Pouwels PH, Enger-Valk BE, Verheijen JH. Binding of tissue-type plasminogen activator to lysine, lysine analogues, and fibrin fragments. Biochemistry 1989; 28: 731825.
  • 119
    Nieuwenhuizen W. Fibrin-mediated plasminogen activation. In: NieuwenhuizenW, MosessonMW, deMaatMPM, eds. Fibrinogen. Ann N Y Acad Sci 2001; 936: 23746.
  • 120
    Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen gamma-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator- catalysed activation of plasminogen. Biochem J 1992; 283: 18791.
  • 121
    Grailhe P, Nieuwenhuizen W, Angles-Cano E. Study of tissue-type plasminogen activator binding sites on fibrin using distinct fragments of fibrinogen. Eur J Biochem 1994; 219: 9617.
  • 122
    Tamaki T, Aoki H. Cross-linking of α2-plasmin inhibitor and fibronectin to fibrin by fibrin-stabilizing factor. Biochim Biophys Acta 1981; 661: 2806.
  • 123
    Kimura S, Aoki N. Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor. J Biol Chem 1986; 261: 155915.
  • 124
    Sakata Y, Aoki H. Significance of cross-linking of α2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 1982; 69: 53642.
  • 125
    Mosesson MW, Finlayson JS. Biochemical and chromatographic studies of certain activities associated with human fibrinogen preparations. J Clin Invest 1963; 42: 74755.
  • 126
    Ritchie H, Lawrie LC, Crombie PW, Mosesson MW, Booth NA. Cross-linking of plasminogen activator inhibitor 2 and alpha2-antiplasmin to fibrin(ogen). J Biol Chem 2000; 275: 2491520.
  • 127
    Ritchie H, Robbie LA, Kinghorn S, Exley R, Booth NA. Monocyte plasminogen activator inhibitor 2 (PAI-2) inhibits u-PA-mediated fibrin clot lysis and is cross-linked to fibrin. Thromb Haemost 1999; 81: 96103.
  • 128
    Harpel PC, Gordon BR, Parker TS. Plasmin catalyzes binding of lipoprotein(a) to immobilized fibrinogen and fibrin. Proc Natl Acad Sci U S A 1989; 86: 384751.
  • 129
    Tsurupa G, Ho-Tin-Noe B, Angles-Cano E, Medved L. Identification and characterization of novel lysine-independent apolipoprotein(a)-binding sites in fibrin(ogen) αC-domains. J Biol Chem 2003; 278: 371549.
  • 130
    Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis 1990; 10: 2405.
  • 131
    Hervio L, Durlach V, Girard-Globa A, Anglés-Cano E. Multiple binding with identical linkage: a mechanism that explains the effect of lipoprotein(a) on fibrinolysis. Biochemistry 1995; 34: 133538.
  • 132
    Romanic AM, Arleth AJ, Willette RN, Ohlstein EH. Factor XIIIa cross-links lipoprotein(a) with fibrinogen and is present in human atherosclerotic lesions. Circ Res 1998; 83: 2649.
  • 133
    Leung LLK. Interaction of histidine-rich glycoprotein with fibrinogen and fibrin. J Clin Invest 1986; 77: 130511.
  • 134
    Lijnen HR, Hoylaerts M, Collen D. Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as hisitidine-rich glyocoprotein. J Biol Chem 1980; 255: 1021422.
  • 135
    Anglés-Cano E, Rouy D, Lijnen HR. Plasminogen binding by alpha 2-antiplasmin and histidine-rich glycoprotein does not inhibit plasminogen activation at the surface of fibrin. Biochim Biophys Acta 1992; 1156: 3442.
  • 136
    Anglés-Cano E, Gris JC, Schved JF. Familial association of high levels of histidine-rich glycoprotein and plasminogen activator inhibitor-1 with venous thromboembolism. J Lab Clin Med 1992; 121: 64653.
  • 137
    Castaman G, Ruggeri M, Burei F, Rodeghiero F. High levels of histidine-rich glycoprotein and thrombotic diathesis. Thromb Res 1993; 69: 297305.
  • 138
    Souto JC, Garí M, Falkon L, Fontcuberta J. A new case of hereditary histidine-rich glycoprotein deficiency with familial thrombophila. Thromb Haemost 1996; 75: 3745.
  • 139
    Shigekiyo T. Congenital histidine-rich glycoprotein deficiency. Ryoikibetsu Shokogun Shirizu 1998; 21: 4913.
  • 140
    Shigekiyo T, Yoshida H, Matsumoto K, Azuma H, Wakabayashi S, Saito S, Fujikawa K, Koide T. HRG Tokushima: molecular and cellular characterization of histidine-rich glycoprotein (HRG) deficiency. Blood 1998; 91: 12833.
  • 141
    Odrljin TM, Shainoff JR, Lawrence SO, Simpson-Haidaris PJ. Thrombin cleavage enhances exposure of a heparin binding domain in the N-terminus of the fibrin beta chain. Blood 1996; 88: 205061.
  • 142
    Odrljin TM, Francis CW, Sporn LA, Bunce LA, Marder VJ, Simpson-Haidaris PJ. Heparin-binding domain of fibrin mediates its binding to endothelial cells. Arterioscler Thromb Vasc Biol 1996; 16: 154451.
  • 143
    Yakovlev S, Gorlatov S, Ingham K, Medved L. Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site. Biochemistry 2003; 42: 770916.
  • 144
    Hamaguchi M, Bunce LA, Sporn LA, Francis CW. Spreading of platelets on fibrin is mediated by the amino terminus of the β chain including peptide β 15–42. Blood 1993; 81: 234856.
  • 145
    Sporn LA, Bunce LA, Francis CW. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood 1995; 86: 180110.
  • 146
    Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J. Fibrin II induces endothelial cell capillary tube formation. J Cell Biol 1995; 130: 20715.
  • 147
    Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the β15–42 sequence of fibrin. J Biol Chem 1998; 273: 3071928.
  • 148
    Ribes JA, Bunce LA, Francis CW. Mediation of fibrin-induced release of von Willebrand factor from cultured endothelial cells by the fibrin β chain. J Clin Invest 1989; 84: 43541.
  • 149
    Francis CW, Bunce LA, Sporn LA. Endothelial cell responses to fibrin mediated by FPB cleavage and the amino terminus of the β chain. Blood Cells 1993; 19: 291307.
  • 150
    Martinez J, Ferber A, Bach TL, Yaen CH. Interaction of fibrin with VE-cadherin. Ann N Y Acad Sci 2001; 936: 386405.
  • 151
    Gorlatov S, Medved L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2-terminal portions of the fibrin beta chains. Biochemistry 2002; 41: 410716.
  • 152
    Cheresh DA. Human endothelial cells synthesize and express an arg-gly-asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A 1987; 84: 64715.
  • 153
    Felding-Habermann B, Ruggeri ZM, Cheresh DA. Distinct biological consequences of integrin alpha v beta 3-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. J Biol Chem 1992; 267: 50707.
  • 154
    Gailit J, Clarke C, Newman D, Tonnesen MG, Mosesson MW, Clark RA. Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. Exp Cell Res 1997; 232: 11826.
  • 155
    Asakura S, Niwa K, Tomozawa T, Jin Y-M, Madoiwa S, Sakata Y, Sakai T, Funayama H, Soe G, Forgerty F, Hirata H, Matsuda M. Fibroblasts spread on immobilized fibrin monomer by mobilizing a β1-class integrin, together with a vitronectin receptor αvβ3 on their surface. J Biol Chem 1997; 272: 88249.
  • 156
    Suehiro K, Gailit J, Plow EF. Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem 1997; 272: 53606.
  • 157
    Belkin AM, Tsurupa G, Zemskov E, Veklich Y, Weisel JW, Medved L. Transglutaminase-mediated oligomerization of the fibrin(ogen) αC-domains promotes integrin-dependent cell adhesion and signaling. Blood 2005; 105: (in press).
  • 158
    Kloczewiak M, Timmons S, Lukas TJ, Hawiger J. Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the C-terminal segment of the γ chain. Biochemistry 1984; 23: 176774.
  • 159
    Andrieux A, Hudry-Clergeon G, Ryckwaert J-J. Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GP IIb-IIIa. J Biol Chem 1989; 264: 925865.
  • 160
    Lam SCT, Plow EF, Smith MA, Andrieux A, Ryckwaert J-J, Marguerie GA, Ginsberg MH. Evidence that arginyl-glycyl-aspartate peptides and fibrinogen γ chain peptides share a common binding site on platelets. J Biol Chem 1987; 262: 94750.
  • 161
    Santoro SA, Lawing WJ Jr. Competition for related but nonidentical binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet adhesive proteins. Cell 1987; 48: 86773.
  • 162
    Bennett JS. Platelet-fibrinogen interactions. In: NieuwenhuizenW, MosessonMW, deMaatMPM, eds. Fibrinogen. Ann N Y Acad Sci 2001; 936: 34054.
  • 163
    Altieri DC, Mannucci PM, Capitanio AM. Binding of fibrinogen to human monocytes. J Clin Invest 1986; 78: 96876.
  • 164
    Altieri DC, Bader R, Mannucci PM, Edgington TS. Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol 1988; 107: 1893900.
  • 165
    Flick MJ, Du X, Witte DP, Jirouskova M, Soloviev DA, Busuttil SJ, Plow EF, Degen JL. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004; 113: 1596606.
  • 166
    Ugarova TP, Solovjov DA, Zhang L, Loukinov DI, Yee VC, Medved LV, Plow EF. Identification of a novel recognition sequence for integrin αMβ2 within the γ-chain of fibrinogen. J Biol Chem 1998; 273: 2251927.
  • 167
    Yee VC, Pratt KP, Cote HC, Trong IL, Chung DW, Davie EW, Stenkamp RE, Teller DC. Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen. Structure 1997; 5: 12538.
  • 168
    Ugarova TP, Lishko VK, Podolnikova NP, Okumura N, Merkulov SM, Yakubenko VP, Yee VC, Lord ST, Haas TA. Sequence gamma 377–395(P2), but not gamma 190–202(P1), is the binding site for the alpha MI-domain of integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2003; 42: 936573.
  • 169
    Yakovlev S, Zhang L, Ugarova T, Medved L. Interaction of fibrin(ogen) with leukocyte receptor αMβ2: further characterization and identification of a novel binding region within the central domain of the fibrinogen γ-module. Biochemistry 2005; 44: 61726.
  • 170
    Loike JD, Silverstein R, Wright SD, Weitz JI, Huang AJ, Silverstein SC. The role of protected extracellular compartments in interactions between leukocytes, and platelets, and fibrin/fibrinogen matrices. Ann N Y Acad Sci 1992; 667: 16372.
  • 171
    Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP. Regulated unmasking of the cryptic binding site for integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2002; 41: 1294251.
  • 172
    Zamarron C, Ginsberg MH, Plow EF. Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb Haemost 1990; 64: 416.
  • 173
    Zamarron C, Ginsberg MH, Plow EF. A receptor-induced binding site in fibrinogen elicited by its interaction with platelet membrane glycoprotein IIb-IIIa. J Biol Chem 1991; 266: 161939.
  • 174
    Doolittle RF. X-ray crystallographic studies on fibrinogen and fibrin. J Thromb Haemost 2003; 1: 155965.
  • 175
    Yakovlev S, Litvinovich S, Loukinov D, Medved L. Role of the beta-strand insert in the central domain of the fibrinogen gamma-module. Biochemistry 2000; 39: 157219.
  • 176
    Stathakis NE, Mosesson MW. Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin precipitable fraction of plasma. J Clin Invest 1977; 60: 85565.
  • 177
    Mosher DF. Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. J Biol Chem 1975; 250: 661421.
  • 178
    McDonagh RP, McDonagh J, Petersen TE, Thogersen HC, Skorstengaard K, Sottrup-Jensen L, Magnusson S, Dell A, Morris HR. Amino acid sequence of the factor XIIIa acceptor site in bovine plasma fibronectin. FEBS Lett 1981; 127: 1748.
  • 179
    Matsuka YV, Migliorini MM, Ingham KC. Cross-linking of fibronectin to C-terminal fragments of the fibrinogen alpha-chain by factor XIIIa. J Protein Chem 1997; 16: 73945.
  • 180
    Sahni A, Odrljin T, Francis CW. Binding of basic fibroblast growth factors to fibrinogen and fibrin. J Biol Chem 1998; 273: 75549.
  • 181
    Sahni A, Sporn LA, Francis CW. Potentiation of endothelial cell proliferation by fibrin(ogen)-bound fibroblast growth factor-2. J Biol Chem 1999; 274: 1493641.
  • 182
    Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 2000; 96: 37728.
  • 183
    Sahni A, Guo M, Sahni SK, Francis CW. Interleukin-1beta but not IL-1alpha binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood 2004; 104: 40914.
  • 184
    Mosesson MW. Fibrinogen gamma chain functions. J Thromb Haemost 2003; 1: 2318.