SEARCH

SEARCH BY CITATION

References

  • 1
    Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib–IX–V complex. Thromb Haemost 2001; 86: 17888.
  • 2
    Andrews RK, Berndt MC, López JA. The glycoprotein Ib–IX–V complex. In: MichelsonA, eds. Platelets, 2nd edn. San Diego: Academic Press, 2006: 2.
  • 3
    Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 2003; 35: 11704.
  • 4
    Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88: 152541.
  • 5
    Nieswandt B, Watson SP. Platelet–collagen interaction: is GPVI the central receptor? Blood 2003; 102: 44961.
  • 6
    Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res 2004; 114: 22133.
  • 7
    Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U, Nieswandt B. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 419.
  • 8
    Bergmeier W, Piffath CL, Goerge T, Cifuni SM, Ruggeri ZM, Ware J, Wagner DD. The role of platelet adhesion receptor GPIbα far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA 2006; 103: 169005.
  • 9
    Bergmeier W, Rabie T, Strehl A, Piffath C, Prostredna M, Wagner DD, Nieswandt B. GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thromb Haemost 2004a; 91: 9518.
  • 10
    Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 2004; 104: 36117.
  • 11
    Stephens G, Yan Y, Jandrot-Perrus M, Villeval JL, Clemetson KJ, Phillips DR. Platelet activation induces metalloproteinase-dependent GPVI cleavage to down-regulate platelet reactivity to collagen. Blood 2005; 105: 18691.
  • 12
    Gardiner EE, Arthur JF, Berndt MC, Andrews RK. Role of calmodulin in platelet receptor function. Curr Med Chem Cardiovasc Hematol Agents 2005; 3: 2837.
  • 13
    Rabie T, Strehl A, Ludwig A, Nieswandt B. Evidence for a role of ADAM17 (TACE) in the regulation of platelet glycoprotein V. J Biol Chem 2005; 280: 144628.
  • 14
    Bergmeier W, Piffath CL, Cheng G, Dole VS, Zhang Y, Von Andrian UH, Wagner DD. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates GPIbα shedding from platelets in vitro and in vivo. Circ Res 2004b; 95: 67783.
  • 15
    Aktas B, Pozgajova M, Bergmeier W, Sunnarborg S, Offermanns S, Lee D, Wagner DD, Nieswandt B. Aspirin induces platelet receptor shedding via ADAM17 (TACE). J Biol Chem 2005; 280: 3971622.
  • 16
    Wong MX, Harbour SN, Wee JL, Lau LM, Andrews RK, Jackson DE. Proteolytic cleavage of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is regulated by a calmodulin-binding motif. FEBS Lett 2004; 568: 708.
  • 17
    Naganuma Y, Satoh K, Yi Q, Asazuma N, Yatomi Y, Ozaki Y. Cleavage of platelet endothelial cell adhesion molecule-1 (PECAM-1) in platelets exposed to high shear stress. J Thromb Haemost 2004; 2: 19982008.
  • 18
    Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Cieslak M, Fan R, Boumsell L, Kumanogoh A, Kikutani H, Tamagnone L, Wagner DD, Milla ME, Brass LF. Regulated surface expression and shedding support a dual role for semaphoring 4D in platelet responses to vascular injury. Proc Natl Acad Sci USA 2007; 104: 16216.
  • 19
    Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 2002; 106: 8969.
  • 20
    Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 2005; 6: 3243.
  • 21
    Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 2003; 17: 730.
  • 22
    Huovila APJ, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM. Shedding light on ADAM metalloproteinases. Trends Biochem Sci 2005; 30: 41322.
  • 23
    Amit T, Amit T, Hochberg Z, Yogev-Falach M, Youdim MB, Youdim MB, Barkey RJ. Shedding of growth hormone-binding protein is inhibited by hydroxamic acid-based protease inhibitors: proposed mechanism of activation of growth hormone-binding protein secretase. J Endocrinol 2001; 169: 397407.
  • 24
    Srour N, Lebel A, McMahon S, Fournier I, Fugere M, Day R, Dubois CM. TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett 2003; 554: 27583.
  • 25
    Endres K, Anders A, Kojro E, Gilbert S, Fahrenholz F, Postina R. Tumor necrosis factor-α converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur J Biochem 2003; 270: 238693.
  • 26
    Leonard JD, Lin F, Milla ME. Chaperone-like properties of the prodomain of TNFα-converting enzyme (TACE) and the functional role of its cysteine switch. Biochem J 2005; 387: 797805.
  • 27
    Takeda S, Igarashi T, Mori H, Araki S. Crystal structures of VAP1 reveal ADAMs’ MDC domain architecture and its unique C-shaped scaffold. EMBO J 2006; 25: 238896.
  • 28
    Janes PW, Sah N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123: 291304.
  • 29
    Kahn J, Walcheck B, Migaki GI, Jutila MA, Kishimoto TK. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell 1998; 92: 80918.
  • 30
    Zhao L-C, Shey M, Frnsworth M, Dailey MO. Regulation of membrane metalloproteolytic cleavage of L-selectin (CD62L) by the epidermal growth factor domain. J Biol Chem 2001; 276: 3063140.
  • 31
    Diaz-Rodriguez E, Esparis-Ogando A, Montero JC, Yuste L, Pandiella A. Stimulation of cleavage of membrane proteins by calmodulin inhibitors. Biochem J 2000; 346: 35967.
  • 32
    Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101: 47986.
  • 33
    Goto S, Tamura N, Handa S, Arai M, Kodama K, Takayama H. Involvement of glycoprotein VI in platelet thrombus formation on both collagen and von Willebrand factor surfaces under flow conditions. Circulation 2002; 106: 26672.
  • 34
    López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard–Soulier syndrome. Blood 1998; 91: 4397418.
  • 35
    Jurk K, Clemetson KJ, De Groot PG, Brodde MF, Steiner M, Savion N, Varon D, Sixma JJ, Van Aken H, Kehrel BE. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib(GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 2003; 17: 14902.
  • 36
    Romo GM, Dong J-F, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999; 190: 80314.
  • 37
    Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193204.
  • 38
    Polgar J, Matuskova J, Wagner DD. The P-selectin, tissue factor, coagulation triad. J Thromb Haemost 2005; 3: 15906.
  • 39
    Katayama T, Ikeda Y, Handa M, Tamatani T, Sakamoto S, Ito M, Ishimura Y, Suematsu M. Immunoneutralization of glycoprotein Ibα attenuates endotoxin-induced interactions of platelets and leukocytes with rat venular endothelium in vivo. Circ Res 2000; 86: 10317.
  • 40
    Wang Y, Sakuma M, Chen Z, Ustinov V, Shi C, Croce K, Zago AC, Lopez J, Andre P, Plow E, Simon DI. Leukocyte engagement of platelet glycoprotein Ibαvia the integrin Mac-1 is critical for the biological response to vascular injury. Circulation 2005; 112: 29933000.
  • 41
    Baglia FA, Badellino KO, Li CQ, Lopez JA, Walsh PN. Factor XI binding to the platelet glycoprotein Ib–IX–V complex promotes factor XI activation by thrombin. J Biol Chem 2002; 277: 16628.
  • 42
    Yun TH, Baglia FA, Myles T, Navaneetham D, Lopez JA, Walsh PN, Leung LL. Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ibα with thrombin anion-binding exosites I and II, respectively. J Biol Chem 2003; 278: 481129.
  • 43
    Bradford HN, Pixley RA, Colman RW. Human factor XII binding to the glycoprotein Ib–IX–V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 2000; 275: 2275663.
  • 44
    Joseph K, Nakazawa Y, Bahou WF, Ghebrehiwet B, Kaplan AP. Platelet glycoprotein Ib: a zinc-dependent binding protein for the heavy chain of high-molecular-weight kininogen. Mol Med 1999; 5: 55563.
  • 45
    Dumas JJ, Kumar R, Seehra J, Somers WS, Mosyak L. Crystal structure of the GPIbα-thrombin complex essential for platelet aggregation. Science 2003; 301: 2226.
  • 46
    Celikel R, McClintock RA, Roberts JR, Mendolicchio GL, Ware J, Varughese KI, Ruggeri ZM. Modulation of α-thrombin function by distinct interactions with platelet glycoprotein Ibα. Science 2003; 301: 21821.
  • 47
    Adam F, Bouton MC, Huisse MG, Jandrot-Perrus M. Thrombin interaction with platelet membrane glycoprotein Ibα. Trends Mol Med 2003; 9: 4614.
  • 48
    Vanhoorelbeke K, Ulrichts H, Romijn RA, Huizinga EG, Deckmyn H. The GPIbα-thrombin interaction: far from crystal clear. Trends Mol Med 2004; 10: 339.
  • 49
    De Cristofaro R, De Candia E. Thrombin domains: structure, function and interaction with platelet receptors. J Thromb Thrombolysis 2003; 15: 15163.
  • 50
    De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 2001; 276: 46928.
  • 51
    Ramakrishnan V, DeGuzman F, Bao M, Hall SW, Leung LL, Phillips DR. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc Natl Acad Sci USA 2001; 98: 18238.
  • 52
    Luo S-Z, Mo X, Afshar-Kharghan V, Srinivasan S, López JA, Li R. Glycoprotein Ibα forms disulfides with two glycoprotein Ibβ subunits in the resting platelet Blood 2006; 109: 6039.
  • 53
    Clemetson JM, Polgar J, Magnenat E, Wells TN, Clemetson KJ. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcαR and the natural killer receptors. J Biol Chem 1999; 274: 2901924.
  • 54
    Jandrot-Perrus M, Busfield S, Lagrue AH, Xiong X, Debili N, Chickering T, Le Couedic JP, Goodearl A, Dussault B, Fraser C, Vainchenker W, Villeval JL. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood 2000; 96: 1798807.
  • 55
    Bori-Sanz T, Suzuki-Inoue K, Berndt MC, Watson SP, Tulasne D. Delineation of the region in the glycoprotein VI tail required for association with the Fc receptor γ-chain. J Biol Chem 2003; 278: 3591422.
  • 56
    Locke D, Liu C, Peng X, Chen H, Kahn ML. Fc Rγ-independent signalling by the platelet collagen receptor glycoprotein VI. J Biol Chem 2003; 278: 154418.
  • 57
    Chen H, Locke D, Liu Y, Liu C, Kahn ML. The platelet receptor GPVI mediates both adhesion and signalling responses to collagen in a receptor density-dependent fashion. J Biol Chem 2002; 277: 30119.
  • 58
    Best D, Senis YA, Jarvis GE, Eagleton HJ, Roberts DJ, Saito T, Jung SM, Moroi M, Harrison P, Green FR, Watson SP. GPVI levels in platelets: relationship to platelet function at high shear. Blood 2003; 102: 28118.
  • 59
    Sarratt KL, Chen H, Zutter MM, Santoro SA, Hammer DA, Kahn ML. GPVI and α2β1 play independent critical roles during platelet adhesion and aggregate formation to collagen under flow. Blood 2005; 106: 126877.
  • 60
    Bigalke B, Lindemann S, Ehlers R, Seizer P, Daub K, Langer H, Schonberger T, Kremmer E, Siegel-Axel D, May AE, Gawaz M. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. Eur Heart J 2006; 27: 21659.
  • 61
    Suzuki-Inoue K, Tulasne D, Bori-Sanz T, Inoue O, Jung SM, Moroi M, Shen Y, Andrews RK, Berndt MC, Watson SP. Association of Fyn and Lyn with the proline rich domain of GPVI regulates intracellular signalling. J Biol Chem 2002; 277: 215616.
  • 62
    Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TN, Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 1997; 272: 1357683.
  • 63
    Andrews RK, Gardiner EE, Asazuma N, Berlanga O, Tulasne D, Nieswandt B, Smith AI, Berndt MC, Watson SP. A novel viper venom metalloproteinase, alborhagin, is an agonist at the platelet collagen receptor GPVI. J Biol Chem 2001; 276: 280927.
  • 64
    Andrews RK, Munday AD, Mitchell CA, Berndt MC. Interaction of calmodulin with the cytoplasmic domain of the platelet membrane glycoprotein Ib–IX–V complex. Blood 2001; 98: 6817.
  • 65
    Andrews RK, Suzuki-Inoue K, Shen Y, Tulasne D, Watson SP, Berndt MC. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood 2002; 99: 421921.
  • 66
    Coller BS, Kalomiris E, Steinberg M, Scudder LE. Evidence that glycocalicin circulates in normal plasma. J Clin Invest 1984; 73: 7949.
  • 67
    Arthur JF, Matzaris M, Gardiner EE, Taylor SG, Wijeyewickrema LC, Ozaki Y, Kahn ML, Andrews RK, Berndt MC. Glycoprotein (GP)VI is associated with GPIb-IX-V on the membrane of resting and activated platelets. Thromb Haemostas 2005; 93: 71623.
  • 68
    Nieswandt B, Bergmeier W, Schulte V, Rackebrandt K, Gessner JE, Zirngibl H. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRγ chain. J Biol Chem 2000; 275: 239984002.
  • 69
    Boylan B, Berndt MC, Kahn ML, Newman PJ. Activation-independent, antibody-mediated removal of GPVI from circulating human platelets: development of a novel NOD/SCID mouse model to evaluate the in vivo effectiveness of anti-human platelet agents. Blood 2006; 108: 90814.
  • 70
    Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nat Med 2002; 8: 24752.
  • 71
    Brass LF, Jiang H, Wu J, Stalker TJ, Zhu L. Contact-dependent signaling events that promote thrombus formation. Blood Cells Mol Dis 2006; 36: 15761.
  • 72
    Goll DE, Thompson VF, Li H, Wei WEI, Cong J. The calpain system. Physiol Rev 2003; 83: 731801.
  • 73
    Franco SJ, Huttenlocher A. Regulating cell migration: calpains make the cut. J Cell Sci 2005; 118: 382938.
  • 74
    Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilagyi A, Banoczi Z, Hudecz F, Friedrich P. On the sequential determinants of calpain cleavage. J Biol Chem 2004; 279: 2077585.
  • 75
    Wang KK, Villalobo A, Roufogalis BD. Calmodulin-binding proteins as calpain substrates. Biochem J 1989; 262: 693706.
  • 76
    Satish L, Blair HC, Glading A, Wells A. Interferon-inducible protein 9 (CXCL11)-induced cell motility in keratinocytes requires calcium flux-dependent activation of μ-calpain. Mol Cell Biol 2005; 25: 192241.
  • 77
    Taylor RG, Christiansen JA, Goll DE. Immunolocalization of the calpains and calpastatin in human and bovine platelets. Biomed Biochim Acta 1991; 50: 4918.
  • 78
    Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 1991; 71: 81347.
  • 79
    Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin αIIbβ3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J Biol Chem 1997; 272: 1694702.
  • 80
    Fox JE. Cytoskeletal proteins and platelet signalling. Thromb Haemost 2001; 86: 198213.
  • 81
    Bialkowska K, Kulkarni S, Du X, Goll DE, Saido TC, Fox JE. Evidence that β3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active. J Cell Biol 2000; 151: 68596.
  • 82
    Wee JL, Jackson DE. The Ig-ITIM superfamily member PECAM-1 regulates the “outside-in” signalling properties of integrin αIIbβ3 in platelets. Blood 2005; 106: 381623.
  • 83
    Rathore V, Stapleton MA, Hillery CA, Montgomery RR, Nichols TC, Merricks EP, Newman DK, Newman PJ. PECAM-1 negatively regulates GPIb/V/IX signalling in murine platelets. Blood 2003; 102: 365864.
  • 84
    Falati S, Patil S, Gross PL, Stapleton M, Merrill-Skoloff G, Barrett NE, Pixton KL, Weiler H, Cooley B, Newman DK, Newman PJ, Furie BC, Furie B, Gibbins JM. Platelet PECAM-1 inhibits thrombus formation in vivo. Blood 2006; 107: 53541.
  • 85
    Thai le M, Ashman LK, Harbour SN, Hogarth PM, Jackson DE. Physical proximity and functional interplay of PECAM-1 with the Fc receptor FcγRIIa on the platelet plasma membrane. Blood 2003; 102: 363745.
  • 86
    Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signalling in platelets. Blood 2004; 104: 160615.
  • 87
    Du X, Saido TC, Tsubuki S, Indig FE, Williams MJ, Ginsberg MH. Calpain cleavage of the cytoplasmic domain of the integrin β3 subunit. J Biol Chem 1995; 270: 2614651.
  • 88
    Xi X, Bodnar RJ, Li Z, Lam SC, Du X. Critical roles for the COOH-terminal NITY and RGT sequences of the integrin β3 cytoplasmic domain in inside-out and outside-in signalling. J Cell Biol 2003; 162: 32939.
  • 89
    Pfaff M, Du X, Ginsberg MH. Calpain cleavage of integrin β cytoplasmic domains. FEBS Lett 1999; 460: 1722.
  • 90
    Evans BJ, McDowall A, Taylor PC, Hogg N, Haskard DO, Landis RC. Shedding of lymphocyte function-associated antigen-1 (LFA-1) in a human inflammatory response. Blood 2006; 107: 35939.
  • 91
    Hemler ME. Shedding of heterodimeric leukocyte integrin. Blood 2006; 107: 34178.
  • 92
    Langer H, May AE, Bultmann A, Gawaz M. ADAM15 is an adhesion receptor for platelet GPIIb-IIIa and induces platelet activation. Thromb Haemost 2005; 94: 55561.
  • 93
    Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 2007; 109: 56676.
  • 94
    Kulkarni S, Dopheide SM, Yap CL, Ravanat C, Freund M, Mangin P, Heel KA, Street A, Harper IS, Lanza F, Jackson SP. A revised model of platelet aggregation. J Clin Invest 2000; 105: 78391.
  • 95
    Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 38592.
  • 96
    Ni H, Yuen PS, Papalia JM, Trevithick JE, Sakai T, Fassler R, Hynes RO, Wagner DD. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 2003; 100: 24159.
  • 97
    Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 95249.
  • 98
    Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8: 117581.
  • 99
    Celi A, Merrill-Skoloff G, Gross P, Falati S, Sim DS, Flaumenhaft R, Furie BC, Furie B. Thrombus formation: direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscopy. J Thromb Haemost 2003; 1: 608.